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Abstract
Background: This study aims to elucidate the causal relationships between 1400
blood metabolites and pain related to temporomandibular disorders (TMD) using
Mendelian Randomization (MR) analysis. Methods: Utilizing data from genome-wide
association studies (GWAS), our analysis was conducted with R software using the
“TwoSampleMR” package. The primarymethod applied was Inverse VarianceWeighted
(IVW) analysis, which was supplemented with MR-Egger, Weighted Median, Simple
Mode and Weighted Mode methods to examine the causal impact of blood metabolites
on TMD-associated pain. We also assessed heterogeneity and the presence of horizontal
pleiotropy using MR-Egger regression, MR-PRESSO (MR Pleiotropy Residual Sum
and Outlier) global tests, and MR-Egger intercept tests. Results: Three metabolites—
Acetylcarnitine, Propionylcarnitine (c3) and X-24241—were significantly associated
with TMD-related pain. Specifically, Acetylcarnitine had an odds ratio (OR) of 1.409
(95% CI (confidence intervals): 1.016–1.954, p = 0.04), Propionylcarnitine (c3) had an
OR of 1.194 (95% CI: 1.036–1.377, p = 0.014), and X-24241 had an OR of 1.408 (95%
CI: 1.108–1.790, p = 0.005). Conclusions: This study establishes a causal link between
increased levels of these three metabolites and TMD-related pain. Our findings provide
new insights into the pathogenesis of TMD and potential therapeutic targets.
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1. Introduction

Temporomandibular disorders (TMD) constitute a heteroge-
neous group of conditions affecting the temporomandibular
joints, masticatory muscles and related structures. Common
symptoms include joint pain, abnormal jaw movements, click-
ing or popping sounds, and restricted mouth opening, making
TMD a frequent concern in dental practice [1, 2]. Statistics
show that the reported prevalence of TMD varies from country
to country. The prevalence of TMD in the general U.S. pop-
ulation ranges from 10% to 26% [3], approximately 13.0% in
Germany [4] and about 35% in Finland [5]. In a specific cohort

of Chinese students, the prevalence is 29.1% [6]. Among
affected individuals, pain associated with TMD is one of the
primary symptoms and is the most common reason for seeking
treatment, which captures a wide range of painful conditions
associated with temporomandibular disorders [7]. A multi-
center prospective cohort study found that 4% of individuals
aged 18 to 44 without TMD are diagnosed with primary TMD-
related pain annually, with new cases of TMD-related pain
reaching 19% each year (defined as facial pain occurring for
at least five days per month for one month or longer) [8]. This
significantly impacts patients’ quality of life, yet treatment
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outcomes remain suboptimal due to the unclear etiology.

With recent breakthroughs in metabolomics technology, the
identification of potential metabolic biomarkers and altered
pathways has advanced our comprehension of disease mech-
anisms [9]. Some studies have shown that saliva metabo-
lites may play an important role in pain, inflammation or
joint disease [10]. Compared with salivary metabolites, blood
metabolites are more widely distributed and stable in the body,
so they have a wider range of applications in disease diagnosis,
disease monitoring and treatment effect evaluation [11, 12].
Yet, the associative data provided by many metabolites often
falls short of establishing causal links with diseases [13].

Mendelian randomization (MR), a robust method for causal
inference, leverages genetic variants as instrumental variables
(IVs) to deduce causal relationships between exposures and
outcomes [14, 15]. In MR frameworks, genetic variations
linked to the exposure of interest are sourced from genome-
wide association studies (GWAS) and utilized in independent
datasets to procure unbiased estimates of the relationships
between exposures and outcomes [16]. MR approaches present
distinct advantages over traditional epidemiological studies.
Firstly, they minimize biases related to reverse causation [17].
Secondly, the random distribution of alleles during meiosis
ensures that MR studies are not influenced by common behav-
ioral, physiological, and socioeconomic confounders. Lastly,
the structure of MR studies, similar to randomized controlled
trials, alleviates ethical, feasibility and financial concerns sig-
nificantly [18]. To date, studies have reported the use of MR
to study the causal associations between sleep characteristics
[19], educational level [20], autoimmune disorders [21], and
psychiatric characteristics [22] with TMD.

However, MR has not been applied to explore the causal
connections between blood metabolites and pain linked to
TMD. This study utilizes MR analysis to examine the causal
links between 1400metabolites and pain associatedwith TMD,
with the objective of identifying specific metabolites that di-
rectly contribute to TMD-related pain. The findings aim to
shed light on targeted therapeutic approaches for managing
temporomandibular pain, potentially paving way for more
effective treatment strategies. This study follows the MR
reporting guidelines outlined by STROBE-MR (Strengthen-
ing the reporting of observational studies in epidemiology
usingMendelian randomization) to ensure transparency, repro-
ducibility and quality in our research.

2. Materials and methods

2.1 Study design and data sources

The GWAS summary data used in this study were obtained
from publicly available datasets and were formatted consis-
tently. Essential information extracted related to the exposure
factors included single nucleotide polymorphisms (SNPs), ef-
fect sizes, and the corresponding effect genes for each SNP.
Other necessary information included the significance metrics
(p-values) for the SNPs related to the exposure factors. The
blood metabolites data were obtained from a publicly avail-
able GWAS meta-analysis, which includes 8299 individuals
of European ancestry and comprises 1400 blood metabolites
[23]. The TMD-related pain dataset was sourced from the
FinnGen database, which includes 218,792 participants (4728
cases and 214,064 controls). For this study, we used ICD
(International Statistical Classification of Diseases)-10 code
K07.6 (“finn-b-DENTAL_TMD”) to identify cases of TMD-
related pain. The summary statistics from this genome-wide
association study have been archived in the GWAS Catalog,
accessible via https://www.ebi.ac.uk/gwas/.

2.2 Selection of instrumental variables

To ensure the stability of the dataset and the accuracy of the
results in this study where metabolites are used as exposures
and TMD-related pain as the outcome, we established stringent
criteria for selecting IVs: (a) In our study, we used a signifi-
cance threshold of 1× 10−6 for IVs linked to metabolites. This
decision was made to mitigate the risk of false-negative find-
ings that might arise from using an overly stringent threshold,
such as 5 × 10−8, which could exclude SNPs with potential
biological relevance. (b) We then performed linkage disequi-
librium (LD) clustering with an R2 < 0.001 and an LD block
length of 10,000 kb to reduce the effects of SNP correlation
and guarantee the independence of genetic associations [24];
(c) The statistical robustness of the genetic variants used as
IVs was evaluated using the F-statistic to mitigate biases in the
causal inference between alleles, metabolites and TMD-related
pain. IVs with an F-statistic ≤10 were considered weak and
excluded due to their potential to produce biased outcomes,
whereas an F-statistic >10 indicated strong IVs [25] (detailed
information is available in Supplementary Tables 1,2). To
quantify the relationship between the exposure variable and
the outcome, we first calculate the proportion of variance
explained by the exposure, denoted as R2. This is derived from
the effect size and allele frequency of the exposure variable.
The formula for R2 is expressed as follows:

https://www.ebi.ac.uk/gwas/
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R2 =
2× β2

exposure × eafexposure × (1− eafexposure)

2× β2
exposure × eafexposure ×

(
1− eafexposure

)
+ 2× se2exposure × nexposure × eafexposure ×

(
1− eafexposure

)
Subsequently, to assess the significance of the model, we

compute the F statistic, which relates the proportion of ex-
plained variance to the sample size. The formula for the F
statistic is given by:

F =
R2 × (nexposure − 2)

1−R2

βexposure: Represents the effect size of the exposure vari-
able (regression coefficient).
eafexposure: Represents the effect allele frequency of the

exposure variable.
seexposure: Represents the standard error of the effect of the

exposure variable.
nexposure: Represents the sample size.

2.3 MR analysis

To explore the complex interactions between metabolites and
pain associated with temporomandibular disorders, we me-
thodically employed five distinct MR analytical techniques.
These included Inverse Variance Weighted (IVW), MR-Egger,
Weighted Median, Simple Mode and Weighted Mode [25–
28]. As our principal analytical strategy, the IVW method
aggregates the Wald ratios of each IV, akin to a meta-analysis.
The validity of our findings can be assessed by statistical
efficacy calculations to assess whether each IV meets the MR
assumptions, post hoc power calculations for MR analyses
are available online via https://sb452.shinyapps.io/power/, and
whether horizontal multidimensionality exists [29]. The MR-
Egger regression is tailored to handle pleiotropic effects, as-
serting that these effects must be independent of the genetic
exposure factors to yield precise causal estimates [27, 30]. If
not all five methods reach the significance level of p < 0.05,
we prioritize the IVW method. This is not only because a
significant IVW result suggests a potential causal link between
the exposure and the outcome, but also because the IVW
method is a well-established and widely used statistical ap-
proach in MR studies. It combines information from multiple
genetic variants, yielding more precise and robust estimates.
Notably, if the IVW method indicates significant findings
without evidence of pleiotropy or heterogeneity, and the effect
direction is consistent across all analytical methods, we regard
these results as robust—even if other methods do not reach

statistical significance (p > 0.05).
To ensure the thoroughness of our findings, we conducted

extensive sensitivity analyses. Initially, we assessed hetero-
geneity using Cochran’s Q and MR-Egger tests, where a p-
value < 0.05 denotes significant heterogeneity. Furthermore,
the MR-Egger intercept test was utilized to detect pleiotropy
and verify the reliability of our results. A p-value < 0.05
in this test indicates the presence of pleiotropy. We also
applied the MR Pleiotropy Residual Sum and Outlier (MR-
PRESSO) method to meticulously check for pleiotropic bias.
The findings were aligned with the IVW results after outlier
exclusion [31]. Fig. 1 illustrates specific details of our study
design.

2.4 Statistical analysis

To examine the causal links between the 1400 metabolites
and pain associated with temporomandibular disorders, our
study primarily utilized methods such as IVW and Weighted
Median estimation. These analyses were conducted using the
“TwoSampleMR” package, version 0.6.8, in the R software
environment, which is specifically tailored for MR analyses
and offers comprehensive tools for estimation, testing and
sensitivity assessments of causal relationships [32]. The entire
statistical procedure was carried out using R software, version
4.4.1, a premier platform for statistical computing and graph-
ics, accessible at http://www.r-project.org/.
Data preparation and handling were meticulously performed

to ensure the clarity and integrity of the findings. Odds ratios
(OR) along with their 95% confidence intervals (CI) were
systematically formatted for clear presentation. p-values were
adjusted to improve the interpretability of the results. Further-
more, we addressed any missing values for exposure IDs and
SNP counts meticulously, guaranteeing a robust dataset ready
for detailed analysis.

3. Results

3.1 MR analysis

In this investigation, the IVW method served as the bench-
mark for evaluating the causal associations between blood
metabolites and pain linked to TMD. We pinpointed three
metabolites significantly associated with TMD-related pain:
Acetylcarnitine (IVW: OR = 1.409, 95% CI: 1.016–1.954, p

https://sb452.shinyapps.io/power/
http://www.r-project.org
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FIGURE 1. Conceptual framework of the MR study on the causal relationship between blood metabolites and pain
associated with temporomandibular disorders. IV: Instrumental Variable; LD: Linkage Disequilibrium; MR: Mendelian
Randomization; MR-PRESSO: MR Pleiotropy Residual Sum and Outlier; TMD: temporomandibular disorders.

< 0.05), Propionylcarnitine (c3) (IVW: OR = 1.194, 95% CI:
1.036–1.377, p< 0.05), and X-24241 (IVW: OR = 1.408, 95%
CI: 1.108–1.790, p < 0.05), as depicted in Fig. 2. The initial
findings from the IVW analysis suggest that these metabolites
act as risk factors for TMD-related pain, with increased lev-
els correlating with a higher probability of experiencing this
condition.

3.2 Reliability and stability analysis of
results

In the IVW analysis, the Cochran’s Q test for Acetylcarnitine
resulted in a p-value of 0.09, and the MR-Egger regression test
showed a p-value of 0.10, both exceeding the threshold of 0.05,
indicating the absence of heterogeneity in the study results.

Similarly, both tests for Propionylcarnitine (c3) and X-24241
also yielded p-values greater than 0.05, further confirming no
significant heterogeneity. Additionally, the Egger intercepts
for these metabolites recorded p-values of 0.46, 0.84 and 0.78
respectively, all suggesting no horizontal pleiotropy. The
comprehensive MR-PRESSO test results, with p-values of
0.32 for each metabolite, underscored the absence of signif-
icant outliers or deviations among the IVs, enhancing the
robustness and validity of our MR findings (Table 1). The post
hoc power calculations for the MR analysis were as follows:
PowerAcetylcarnitine = 99.1%, PowerPropionylcarnitine(c3) =
83.8%, PowerX−24241 = 97.8%.

The circular plot analysis, incorporating five distinct MR
methods—IVW,MR-Egger regression, weighted median, sim-
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FIGURE 2. Forest plot of the impact of metabolites on TMD-related pain (GCST90199669 refer to Acetylcarnitine;
GCST90199708 refer to Propionylcarnitine (c3); GCST90200623 refer to X-24241). OR: Odds ratios; CI: confidence
intervals; MR: Mendelian Randomization; val: value; nsnp: number of single nucleotide polymorphisms. Bold format represents
p < 0.05 considered statistically different.

TABLE 1. Sensitivity analysis of the impact of metabolites on TMD-related pain in MR study.

Exposure Outcome SNPs Heterogeneity Test Pleiotropy Test MR-PRESSO

MR-Egger Q (p) Cochran’s Q (p) Egger-intercept (p) RSSobs (p)

Acetylcarnitine
(GCST90199669)

TMD related pain 4 4.57 (0.10) 6.43 (0.09) 0.06 (0.46) 22.06 (0.32)

Propionylcarnitine (c3)
(GCST90199708)

TMD related pain 6 6.68 (0.15) 6.76 (0.24) 0.01 (0.84) 13.50 (0.23)

X-24241
(GCST90200623)

TMD related pain 5 5.12 (0.16) 5.27 (0.26) 0.02 (0.78) 10.96 (0.29)

TMD: temporomandibular disorders; SNPs: single nucleotide polymorphisms; MR: Mendelian Randomization; MR-PRESSO:
MR Pleiotropy Residual Sum and Outlier; RSSobs: Residual Sum of Squares observed.

ple mode, and weighted mode—highlighted blood metabolites
associated with TMD-related pain. A smaller p-value in this
context indicates a stronger association (Fig. 3).

The forest plot’s horizontal axis represents effect sizes, with
values greater than zero suggesting risk factors, and values
less than zero indicating protective factors. The combined
effect sizes of the associated SNPs were positive, identifying
Acetylcarnitine, Propionylcarnitine (c3) and X-24241 as risk
factors for TMD-related pain (Fig. 4).

Leave-one-out analysis for these metabolites showed that
the overall effect estimates lay to the right of the null line, indi-
cating that no single SNP dominated the observed associations.

Stepwise exclusion analysis revealed no significant impact of
any individual SNP on the causal estimates (Fig. 5).

The scatter plot used five algorithms to regress metabolite
SNPs, displaying SNP effects on metabolites along the x-
axis and their impact on TMD-related pain along the y-axis.
The upward trajectory of the lines indicates that as metabolite
levels increase, so does the risk of developing TMD-related
pain. This confirms a significant positive causal relationship
between Acetylcarnitine, Propionylcarnitine (c3) and X-24241
and TMD-related pain, with demonstrated stability of the in-
cluded SNPs (Fig. 6).
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FIGURE 3. Circular plot illustrating the selection of blood metabolites associated with TMD-related pain, meeting the
criteria of at least one of the five research methods. IVW: Inverse Variance Weighted; MR: Mendelian Randomization.

4. Discussion

TMD are among the four most common dental conditions,
characterized by complex etiologies and often uncertain treat-
ment efficacy, presenting significant challenges in clinical
practice. The diagnostic criteria for temporomandibular dis-
orders (DC/TMD) categorize TMD into two major categories:
(1) joint disorders, which include disc dislocations, degener-
ative conditions, and intra-articular inflammatory conditions,
and (2) painful disorders, which encompass muscle pain, joint

pain and TMD-related headaches [33, 34]. TMD-related pain
not only severely affects patients’ quality of life but can also
impact theirmental health [35]. The predominant clinical treat-
ment strategies focus mainly on symptomatic relief to alleviate
pain, largely due to a limited understanding of the underlying
mechanisms of TMD-related pain. TMD pain symptoms are
believed to result from complex interactions among physio-
logical, psychological and social factors [2, 36]. Research has
identified significant roles for large molecular substances such
as pain mediators (e.g., substance P, prostaglandins, throm-
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boxane) [37] and inflammatory factors (e.g., interleukins IL-
1, IL-2, IL-6) [38, 39]. Additionally, increased expression
of matrix metalloproteinases (MMP-1, MMP-2 and MMP-13)
has been linked to joint inflammation and the progression of
pain [40]. While changes in blood metabolites are suspected
to influence the onset of TMD-related pain, the genetic basis

of these metabolites remains underexplored.

This study, through MR analysis, identified three
metabolites—Acetylcarnitine, Propionylcarnitine (c3)
and X-24241—that show a positive causal relationship
with the occurrence of TMD-related pain, indicating that
elevated levels of these metabolites increase the risk of

FIGURE 4. Forest plots showing composite effects of SNPs related to metabolites. (A) Forest plot showing the cumulative
effect of SNPs associated with Acetylcarnitine on TMD-related pain; (B) Forest plot illustrating the cumulative effect of SNPs
associated with Propionylcarnitine (c3) on TMD-related pain; (C) Forest plot depicting the cumulative effect of SNPs associated
with X-24241 on TMD-related pain. MR: Mendelian Randomization.

FIGURE 5. Leave-one-out analysis forest plots formetabolites. (A) Forest map of the analysis of metabolite Acetylcarnitine;
(B) Forest map of the analysis of metabolite Propionylcarnitine (c3); (C) Forest map of the analysis of metabolite X-24241. MR:
Mendelian Randomization.
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FIGURE 6. Scatter plots showing the risk of pain associated with TMD related to metabolites. (A) Scatter plot of the
risk associated with Acetylcarnitine for TMD-related pain; (B) Scatter plot of the risk associated with Propionylcarnitine (c3) for
TMD-related pain; (C) Scatter plot of the risk associated with X-24241 for TMD-related pain. MR: Mendelian Randomization;
SNP: single nucleotide polymorphisms.

developing this condition. Acetylcarnitine plays a key role
in transporting long-chain fatty acids across mitochondrial
membranes, making it an essential molecule for energy
metabolism [41]. In addition to its primary metabolic
functions, Acetylcarnitine has antioxidant properties that
protect against oxidative stress. It regulates neurotransmitters
through epigenetic mechanisms and has shown neurotrophic
and analgesic activity in experimental models of chronic
inflammation and neuropathic pain [42–44]. Studies have
reported lower concentrations of acetylcarnitine in patients
with osteoarthritis compared to healthy individuals [45],
suggesting that Acetylcarnitine could be a valuable biomarker
for musculoskeletal disorders, including TMD-related pain.
Our study shows that alterations in Acetylcarnitine levels

may be linked to TMD-related pain, warranting further
research to explore whether modulating Acetylcarnitine
could be a potential therapeutic target. Propionylcarnitine
(c3) is significant in metabolic conditions like propionic
acidemia and methylmalonic acidemia [46]. Recent evidence
suggests that fluctuations in propionylcarnitine levels are
correlated with chronic pain phenotypes, including those
related to inflammatory responses [47]. Our study highlights
the potential role of propionylcarnitine in modulating the
inflammatory processes associated with TMD-related pain,
making it a potential marker for identifying and managing
chronic pain in TMD patients. An intriguing finding was
the discovery of an “unknown” metabolite, X-24241, which,
although less well studied, was hypothesized to be potentially
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involved in TMD-related pain based on its structural similarity
to metabolites related to pain modulation and oxidative
stress. Although its chemical nature remains undefined, the
identification of a causal relationship with TMD-related pain
suggests that further studies of X-24241 may yield valuable
insights. This suggests that acetylcarnitine, propionylcarnitine
and X-24241 may serve as measurable indicators of metabolic
dysregulation in patients with TMD. Understanding the
mechanism of action of these metabolites in TMD-related
pain can help develop targeted therapeutic strategies. For
example, based on the changes in these metabolic markers, we
can develop personalized prevention plans, such as modifying
dietary habits and increasing the intake of specific nutrients,
to prevent the occurrence of TMD or promote recovery.
Furthermore, it is necessary to conduct more rigorous studies,
including longitudinal studies and clinical trials, to validate
the roles of these metabolites and explore their broader
applications in clinical practice.

Despite these advancements, this study’s limitations must be
acknowledged. The datasets may include unknown confound-
ing factors influencing the outcomes, for example, there may
be selectivity bias in selecting the FinnGen database for anal-
ysis. Moreover, the GWAS summary data, primarily derived
from European populations, may not be universally applicable.
The lack of individual metabolite level data prevents a detailed
analysis of how specific metabolites contribute to different
types of pain (e.g., muscle pain, joint pain, TMD headaches).
The definition of TMD-related pain in this study covers a
wide range of pain symptoms associated with TMJ disorders,
which ensures inclusiveness of all TMD-related pain types;
however, more refined subcategories could provide additional
insights for future studies. Therefore, DC/TMD-specific di-
agnoses need to be included in future studies to improve
clinical relevance. Moreover, while the study suggests causal
relationships, it does not explore the precise mechanisms by
which metabolites influence TMD-related pain. In conclusion,
this study underscores the potential of molecular mechanisms
in exploring the causal relationships between blood metabo-
lites and TMD-related pain, providing a robust theoretical
foundation for future clinical research. However, further stud-
ies are needed to validate these findings and elucidate the
mechanisms involved, enhancing the potential for targeted
treatment strategies.

5. Conclusions

In summary, this study explored the causal relationship
between blood metabolites and temporomandibular disorder
(TMD)-related pain using Mendelian randomization. Our
findings elucidate the risk factors and potential protective
factors associated with TMD-related pain, emphasizing the
complex interplay of genetic and metabolic factors in its
pathogenesis. However, a comprehensive understanding
of the underlying mechanisms by which these metabolites
influence TMD-related pain is crucial for developing targeted
therapeutic strategies. At the same time, it is extremely
important to validate these causal relationships through
experimental and longitudinal studies, especially in different
populations and pain classifications. These studies will not
only provide deeper insights to reveal new therapeutic targets
for the prevention and treatment of TMD-related pain, but they
are also expected to change the outcome of dental medicine
for patients.

AVAILABILITY OF DATA AND MATERIALS

The data are contained within this article.

AUTHOR CONTRIBUTIONS

XEZ and WHX—designed and performed the research study.
XEZ and KTL—analyzed the data and wrote the manuscript.
All authors contributed to editorial changes in the manuscript.
All authors read and approved the final manuscript.

ETHICS APPROVAL AND CONSENT TO
PARTICIPATE

Not applicable.

ACKNOWLEDGMENT

We would like to express our gratitude to the MRC Integrative
Epidemiology Unit for providing valuable resources
and guidance through their website (https://mrcieu.r-
universe.dev/packages), which facilitated the installation
and use of various R packages essential for our
analysis. Additionally, we appreciate the comprehensive
information and data on disease research available at
https://gwas.mrcieu.ac.uk/, which significantly contributed to
the depth of our study.

https://mrcieu.r-universe.dev/packages
https://mrcieu.r-universe.dev/packages
https://gwas.mrcieu.ac.uk/


164

FUNDING

This study was supported by grants from Key R&D Program
of Jiangxi Provincial Department of Science and Technol-
ogy (No. 20203BBG73048) and Natural Science Foundation
project of Jiangxi Province in China (No. 20224ACB206022).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

SUPPLEMENTARY MATERIAL

Supplementary material associated with this article can be
found, in the online version, at https://files.jofph.com/
files/article/1933045171506561024/attachment/
Supplementary%20material.xlsx.

REFERENCES
[1] Velly AM, Anderson GC, Look JO, Riley JL, Rindal DB, Johnson K,

et al. Management of painful temporomandibular disorders: methods
and overview of the national dental practice-based research network
prospective cohort study. Journal of the American Dental Association.
2022; 153: 144–157.

[2] Kapos FP, Exposto FG, Oyarzo JF, Durham J. Temporomandibular
disorders: a review of current concepts in aetiology, diagnosis and
management. Oral Surgery. 2020; 13: 321–334.

[3] Shrivastava M, Battaglino R, Ye L. A comprehensive review on biomark-
ers associated with painful temporomandibular disorders. International
Journal of Oral Science. 2021; 13: 23.

[4] Wu N, Hirsch C. Temporomandibular disorders in German and Chinese
adolescents. Journal of Orofacial Orthopedics. 2010; 71: 187–198.

[5] Qvintus V, Sipila K, Le Bell Y, Suominen AL. Prevalence of clinical
signs and pain symptoms of temporomandibular disorders and associated
factors in adult Finns. Acta Odontologica Scandinavica. 2020; 78: 515–
521.

[6] Xie C, Lin M, Yang H, Ren A. Prevalence of temporomandibular
disorders and its clinical signs in Chinese students, 1979–2017: a
systematic review and meta-analysis. Oral Diseases. 2019; 25: 1697–
1706.

[7] Shimada A, Ishigaki S, Matsuka Y, Komiyama O, Torisu T, Oono Y, et
al. Effects of exercise therapy on painful temporomandibular disorders.
Journal of Oral Rehabilitation. 2019; 46: 475–481.

[8] Slade GD, Fillingim RB, Sanders AE, Bair E, Greenspan JD, Ohrbach R,
et al. Summary of findings from the OPPERA prospective cohort study
of incidence of first-onset temporomandibular disorder: implications and
future directions. Journal of Pain. 2013; 14: T116–T124.

[9] Yang Q, Vijayakumar A, Kahn BB. Metabolites as regulators of insulin
sensitivity and metabolism. Nature Reviews Molecular Cell Biology.
2018; 19: 654–672.

[10] Khoo SC, Shoji Y, Teh CH, Ma NL. Discovery of biomarkers for
myogenous temporomandibular disorders through salivary metabolomic
profiling: a pilot study. Journal of Oral & Facial Pain and Headache.
2023; 37: 207–216.

[11] Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers
and towards mechanisms. Nature ReviewsMolecular Cell Biology. 2016;
17: 451–459.

[12] Wang Z, Chen S, Zhu Q, Wu Y, Xu G, Guo G, et al. Using a two-sample
mendelian randomization method in assessing the causal relationships
between human blood metabolites and heart failure. Frontiers in
Cardiovascular Medicine. 2021; 8: 695480.

[13] Wang Z, Yang Q. The causal relationship between human blood
metabolites and the risk of visceral obesity: a Mendelian randomization
analysis. Lipids in Health and Disease. 2024; 23: 39.

[14] Sekula P, Del Greco MF, Pattaro C, Köttgen A. Mendelian randomization
as an approach to assess causality using observational data. Journal of the
American Society of Nephrology. 2016; 27: 3253–3265.

[15] Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies
NM, Swanson SA, et al. Strengthening the reporting of observational
studies in epidemiology using mendelian randomization: the STROBE-
MR statement. JAMA. 2021; 326: 1614–1621.

[16] Yang J, Yan B, Zhao B, Fan Y, He X, Yang L, et al. Assessing the causal
effects of human serum metabolites on 5 major psychiatric disorders.
Schizophrenia Bulletin. 2020; 46: 804–813.

[17] Burgess S, Swanson SA, Labrecque JA. Are Mendelian randomization
investigations immune from bias due to reverse causation? European
Journal of Epidemiology. 2021; 36: 253–257.

[18] Guo JZ, Xiao Q, Gao S, Li XQ, Wu QJ, Gong TT. Review of Mendelian
randomization studies on ovarian cancer. Frontiers in Oncology. 2021; 11:
681396.

[19] Xu C, Ren X, Lin P, Jin S, Zhang Z. Exploring the causal effects of
sleep characteristics on TMD-related pain: a two-sample Mendelian
randomization study. Clinical Oral Investigations. 2024; 28: 384.

[20] Chen X, Cheng Z, Xu J, Wang Q, Zhao Z, Jiang Q. Causal effects
of educational attainment on temporomandibular disorders and the
mediating pathways: a Mendelian randomization study. Journal of Oral
Rehabilitation. 2024; 51: 817–826.

[21] Chen X, Cheng Z, Xu J, Wang Q, Zhao Z, Jiang Q. Causal effects of
autoimmune diseases on temporomandibular disorders and the mediating
pathways: a Mendelian randomization study. Frontiers in Immunology.
2024; 15: 1390516.

[22] Xiang Y, Song J, Liang Y, Sun J, Zheng Z. Causal relationship between
psychiatric traits and temporomandibular disorders: a bidirectional two-
sample Mendelian randomization study. Clinical Oral Investigations.
2023; 27: 7513–7521.

[23] Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G,
Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes
metabolites implicated in human diseases. Nature Genetics. 2023; 55:
44–53.

[24] Cheng Q, Yang Y, Shi X, Yeung KF, Yang C, Peng H, et al. MR-LDP:
a two-sample Mendelian randomization for GWAS summary statistics
accounting for linkage disequilibrium and horizontal pleiotropy. NAR
Genomics and Bioinformatics. 2020; 2: lqaa028.

[25] Burgess S, Thompson SG. Interpreting findings fromMendelian random-
ization using the MR-Egger method. European Journal of Epidemiology.
2017; 32: 377–389.

[26] Du Y, Wang Q, Zheng Z, Zhou H, Han Y, Qi A, et al. Gut microbiota
influence on lung cancer risk through blood metabolite mediation: from
a comprehensive Mendelian randomization analysis and genetic analysis.
Frontiers in Nutrition. 2024; 11: 1425802.

[27] Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent
estimation in Mendelian randomization with some invalid instruments
using a weighted median estimator. Genetic Epidemiology. 2016; 40:
304–314.

[28] Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG. Sensitivity
analyses for robust causal inference from Mendelian randomization
analyses with multiple genetic variants. Epidemiology. 2017; 28: 30–42.

[29] Burgess S, Butterworth A, Thompson SG. Mendelian randomization
analysis with multiple genetic variants using summarized data. Genetic
Epidemiology. 2013; 37: 658–665.

[30] Bowden J, Davey Smith G, Burgess S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. International Journal of Epidemiology. 2015; 44: 512–525.

[31] Verbanck M, Chen CY, Neale B, Do R. Detection of widespread
horizontal pleiotropy in causal relationships inferred from Mendelian
randomization between complex traits and diseases. Nature Genetics.
2018; 50: 693–698.

[32] Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al.
The MR-base platform supports systematic causal inference across the
human phenome. eLife. 2018; 7: e34408.

https://files.jofph.com/files/article/1933045171506561024/attachment/Supplementary%20material.xlsx
https://files.jofph.com/files/article/1933045171506561024/attachment/Supplementary%20material.xlsx
https://files.jofph.com/files/article/1933045171506561024/attachment/Supplementary%20material.xlsx


165

[33] Schiffman E, Ohrbach R, Truelove E, Look J, Anderson G, Goulet JP,
et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for
clinical and research applications: recommendations of the international
RDC/TMD consortium network* and orofacial pain special interest
group†. Journal of Oral & Facial Pain and Headache. 2014; 28: 6–27.

[34] Reiter S, Emodi-Perlman A, Kasiel H, Abboud W, Friedman-Rubin P,
Arias OW, et al. Headache attributed to temporomandibular disorders:
axis I and II findings according to the diagnostic criteria for temporo-
mandibular disorders. Journal of Oral & Facial Pain and Headache. 2021;
35: 119–128.

[35] Nguyen TT, Vanichanon P, Bhalang K, Vongthongsri S. Pain duration
and intensity are related to coexisting pain and comorbidities present in
temporomandibular disorder pain patients. Journal of Oral & Facial Pain
and Headache. 2019; 33: 205–212.

[36] Karamat A, Smith JG, Melek LNF, Renton T. Psychologic impact of
chronic orofacial pain: a critical review. Journal of Oral & Facial Pain
and Headache. 2022; 36: 103–140.

[37] Jasim H, Ghafouri B, Gerdle B, Hedenberg-Magnusson B, Ernberg
M. Altered levels of salivary and plasma pain related markers in
temporomandibular disorders. The Journal of Headache and Pain. 2020;
21: 105.

[38] Sorenson A, Hresko K, Butcher S, Pierce S, Tramontina V, Leonardi
R, et al. Expression of Interleukin-1 and temporomandibular disorder:
contemporary review of the literature. CRANIO®. 2018; 36: 268–272.

[39] Ibi M. Inflammation and temporomandibular joint derangement. Biolog-
ical and Pharmaceutical Bulletin. 2019; 42: 538–542.

[40] Kringel D, Lippmann C, Parnham MJ, Kalso E, Ultsch A, Lötsch J.
A machine-learned analysis of human gene polymorphisms modulating
persisting pain points to major roles of neuroimmune processes. European
Journal of Pain. 2018; 22: 1735–1756.

[41] Cunha-Oliveira T, Montezinho L, Simoes RF, Carvalho M, Ferreiro E,
Silva FSG.Mitochondria: a promising convergent target for the treatment

of amyotrophic lateral sclerosis. Cells. 2024; 13: 248.
[42] Pourshahidi S, Shamshiri AR, Derakhshan S, Mohammadi S, Ghorbani

M. The effect of Acetyl-L-Carnitine (ALCAR) on peripheral nerve
regeneration in animal models: a systematic review. Neurochemical
Research. 2023; 48: 2335–2344.

[43] Lucarini E, Micheli L, Toti A, Ciampi C, Margiotta F, Di Cesare Mannelli
L, et al. Anti-Hyperalgesic efficacy of Acetyl L-Carnitine (ALCAR)
against visceral pain induced by colitis: involvement of glia in the enteric
and central nervous system. International Journal of Molecular Sciences.
2023; 24: 14841.

[44] Chiechio S, Nicoletti F. Metabotropic glutamate receptors and the control
of chronic pain. Current Opinion in Pharmacology. 2012; 12: 28–34.

[45] Liao ZQ, Han X, Wang YH, Shi J, Zhang Y, Zhao H, et al. Differential
metabolites in osteoarthritis: a systematic review and meta-analysis.
Nutrients. 2023; 15: 4191.

[46] Longo N, Sass JO, Jurecka A, Vockley J. Biomarkers for drug
development in propionic and methylmalonic acidemias. Journal of
Inherited Metabolic Disease. 2022; 45: 132–143.

[47] Miettinen T, Nieminen AI, Mantyselka P, Kalso E, Lötsch J. Machine
learning and pathway analysis-based discovery of metabolomic markers
relating to chronic pain phenotypes. International Journal of Molecular
Sciences. 2022; 23: 5085.

How to cite this article: Xue’e Zhang, Ketong Le, Wei-
hong Xi. Genetic prediction of blood metabolites and causal
relationships with pain associated with temporomandibular
disorders: a Mendelian randomization study. Journal of Oral
& Facial Pain and Headache. 2025; 39(2): 155-165. doi:
10.22514/jofph.2025.034.


	Introduction
	Materials and methods
	Study design and data sources
	Selection of instrumental variables
	MR analysis
	Statistical analysis

	Results
	MR analysis
	Reliability and stability analysis of results

	Discussion
	Conclusions

