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Abstract
Pain assessment in trigeminal neuralgia (TN) mouse models is essential for exploring
its pathophysiology and developing effective analgesics. However, pain assessment
methods for TN mouse models have not been widely studied, resulting in a critical gap
in our understanding of TN. With the rapid advancement of deep learning, numerous
pain assessment methods based on deep learning have emerged. Nonetheless, these
methods have some limitations: (1) insufficiently objective supervision signals for
training, (2) failure to account for the dynamic behavioral characteristics of mouse
models in the constructed models and (3) inadequate generalization ability of the models.
In this study, we initially constructed an objective pain grading dataset as the ground
truth for model training, which remedy the limitations of prior studies that relied on
subjective evaluation as supervisory signals. Then we proposed a novel deep neural
network, named trigeminal neuralgia pain assessment network (TNPAN), which fuses
the static texture characteristics and dynamic behavioral characteristics of mouse facial
expressions. The promising experimental results demonstrate that TNPAN exhibits
exceptional accuracy and generalization capability in pain assessment.
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1. Introduction

Trigeminal neuralgia (TN) is a debilitating condition afflicts a
substantial portion of the global population. Patients with TN
experience excruciating, knife-like, sharp and lightning-like
pain emanating from the trigeminal nerve [1], which imparts a
significant burden. Despite its prevalence, the pathophysiolog-
ical basis of TN remains inadequately understood [2]. Mouse
models of TN have been developed to explore the underlying
pathophysiology and potential therapies for this condition.
Nevertheless, the development of a reliable pain assessment
method for these models remains a significant challenge. The
current lack of widely adopted pain assessment for TN mouse
models has impeded the advancement of research in this area.
Thus, there is a pressing need to develop and validate more
robust pain assessment tools to quantify pain intensity in these
models precisely.

The current pain assessment methods for mice can be classi-
fied into stimulus-evoked and non-stimulus-evoked. Stimulus-
evoked methods involve applying mechanical, thermal (heat
or cold), or chemical stimuli that alter the mice’s behavior,
followed by observing their responses. Non-stimulus-evoked
methods measure spontaneous behaviors such as burrowing,
nesting, weight-bearing or facial grimace scale. The facial gri-

mace scale is extensively utilized as a pain assessment method
for animals, given that facial expressions can be predominantly
considered a reflexive response to noxious stimuli in animal
models, which confers a natural edge in appraising pain inten-
sity. For example, Langford et al. [3] proposed the Mouse
Grimace Scale (MGS) by leveraging the facial expressions of
experimental mice. Dalla Costa et al. [4] introduced the Horse
Grimace Scale (HGS) for pain assessment by analyzing horses’
facial expressions. The facial grimace scale generally includes
various facial action units (AUs), such as the eyes, ears, nose,
cheeks and other facial regions. However, the application of
the facial grimace scale for pain assessment is hindered by the
time-consuming and the introduction of subjective elements.
Even a seasoned pain assessment expert must dedicatemultiple
hours to scrutinize a mouse’s facial expressions, making the
evaluation process taxing [5]. The existence of subjective
factors among evaluators can considerably contribute to the
inter-observer variability in pain assessment. These factors
significantly elevate the complexity of pain assessment.

In recent years, with the rapid development of deep learning,
many non-contact pain assessment models have emerged that
can be applied to humans [6–8]. Motivated by these models,
numerous researchers have initiated their application and dis-
semination on mice. Non-contact pain assessment models can
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be classified into two main categories: one utilizes computer
vision techniques to quantify a series of facial features of ex-
perimental animals, such as eye socket position, nose size, and
ear position, and uses these quantitative results to perform pain
assessment. The other category employs supervised machine
learning methods to train a pain assessment model, which is
then used for pain assessment. While the previous research has
propelled the field of pain assessment, some common issues
exist: (1) The supervisory signals utilized in machine learning
training lack objective standards. The ground truth (GT)
for pain grading frequently stems from annotators’ subjective
evaluations, leading to biased models. (2) Prior models typi-
cally emphasize the static structural features of experimental
mice, disregarding the dynamic behavioral features that are
vital for pain assessment. (3) The models’ ability to generalize
is limited. For example, Tuttle et al. [9], and Vidal et al.
[10] trained their models on white laboratory mice, limiting
the applicability of their models to only white laboratory mice.
This paper presents a non-contact trigeminal neuralgia pain

assessment network (TNPAN) based on dual-channel feature
fusion to address the issues above. The TNPAN model pos-
sesses three distinct advantages: (1) objective supervisory
signals, by virtue of employing pain grading ground truth based
on physiological signals of mice, rather than the subjective
judgments of researchers in the dataset; (2) it incorporates both
static texture characteristics and dynamic behavioral character-
istics of the TN mouse model; and (3) it demonstrates a robust
generalization ability. TNPAN consists of two components:
a motion awareness network (MAN) and a 3D convolutional
neural network (3D-CNN). In MAN, we incorporated the con-
sideration of behavioral features of mouse model, namely,
the pupil and forelimb movements. Mice exhibit significant
changes in pupil size and tend to alleviate pain by rubbing their
face with their forelimbs when experiencing pain. These pain-
related behavioral features have been overlooked in previous
models. In 3D-CNN, we employed 3D convolutional kernels
to capture texture features that are related to pain in the TN
mouse model. This is because facial texture changes occur
when mice experience pain. Finally, MAN and 3D-CNN are
integrated into parallel to compose TNPAN. To assess the
performance of TNPAN, we conducted a comparison with the
state-of-the-art benchmark models. The experimental results
demonstrated that TNPAN outperformed the existing models
in accurately assessing pain in TN mice. To evaluate the
generalization capability of TNPAN,we applied it to themouse
model of infraorbital nerve constriction injury (IoN-CCI). The
results indicated that TNPAN demonstrated strong generaliza-
tion capability in the pain assessment of mice, as the predicted
pain grades were consistent with those obtained through the
von Frey filament test [11]. The contributions of this work are:
1. We constructed an objective pain grading dataset for

model training, which remedied the limitations of prior studies
that relied on subjective evaluation as supervisory signals.
2. We propose a deep neural network named TNPAN, which

takes into account both the static texture characteristics and
dynamic behavioral characteristics of the TN mouse model,
achieving higher accuracy in pain assessment. This dual-
channel feature fusion strategy provides directions for the
future development of pain assessment models.

3. TNPAN demonstrates robust generalization, as it can not
only be applied to acute TN mouse models but also for mice
with infraorbital nerve ligation (IoN-CCI) injury.

2. Related work

2.1 Pain assessment in animals
Pain assessment is essential for painmanagement and selection
of appropriate therapeutic interventions. Facial action units
and landmarks have been utilized to study emotional status in
individuals. McLennan et al. [12] developed a system incorpo-
rating these tools to extract features from specific regions of the
face, including the eyes, nose and mouth, using the histogram
of oriented gradients (HOG) technique. The progress of com-
puter vision algorithms in detecting human facial expressions
has led to recent research exploring the application of similar
tools to study animal behaviors. Langford et al. [3] introduced
the mouse grimace scale (MGS), a facial action coding system
for mice. The MGS relies on five facial features to assess pain:
orbital tightening, nose bulge, cheek bulge, ear position and
whisker change.
However, in using these methods, researchers are faced with

the challenge of identifying the frontal faces of animals from
the video, which is a time-consuming task. To eliminate the
need for manual image extraction, the Rodent Face Finder
software was developed to automatically identify and extract
video frames of mice facing the camera [13]. Nevertheless,
this software is still subject to the influence of annotator bias.
Furthermore, as animals cannot self-report their pain status,
progress on automatic pain assessment based on facial expres-
sion remains limited [14].

2.2 Relation to prior work
The studies by Kopaczka et al. [15], Tuttle et al. [9], and Vidal
et al. [10] are the most relevant to our research. Kopaczka et
al. [15] proposed a deep learning-based method using convo-
lutional neural networks (CNNs) to detect the eye region for
black mice. They recorded the mice against a red background
to simplify the task. Tuttle et al. [9] developed an end-to-
end framework based on the Inception V3 architecture [16]
for the binary classification of pain in white-furred mice (i.e.,
pain versus no pain), using deep learning techniques. Vidal
et al. [10] employed the You Only Look Once (YOLO)
framework to detect the mice’s face and proposed a novel
CNN for eye region extraction and grimace pain prediction.
However, there are common limitations between their study
and those of Kopaczka et al. [15] and Tuttle et al. [9]
Firstly, the ground truth used in their training process is of low
quality due to the subjective factors involved in pain grading.
Secondly, the model proposed by Tuttle and Vidal is only
applicable to white-furred mice, while most mice used in pain
research have black fur. Thirdly, their methods focus only
on the structural features of the mice’s faces while ignoring
the dynamic behavioral characteristics related to pain. In our
study, we propose a framework for pain assessment that takes
into account these factors.
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3. Materials and methods

3.1 Strains of mice and compounds
All mice used in this study were wild-type (C57BL/6J), weigh-
ing between 30 g and 50 g and aged 2–5 weeks. They
were obtained from the Model Animal Research Center of
NanjingUniversity (Nanjing, China) and bred inNanjingBrain
Observatory Laboratory Animal Centre (NBO) with a specific
pathogen-free (SPF) environment. The mice were housed
under a 12 h light, 12 h dark cycle (lights on at 08:00 h) in
a temperature-controlled environment (22 ± 1 ℃) with ad lib
access to food and tap water. Sodium chloride was obtained
from Shanghai Aladdin Biochemical Technology Co. Cal-520
AM was generously provided by Nanjing Brain Observatory.

3.2 Data source
This section presents a detailed description of the experimental
procedures and data acquisition (as depicted in Fig. 1). Ob-
jective pain grading was performed in the TN mouse model
through the infraorbital nerve activity assay and the mouse
facial pain threshold assay.
To achieve an objective pain grading in the TN mouse

model, the MGS method previously used by others was
avoided as it introduces the annotator’s subjective factors.
Instead, this study focuses on the activity of the IoN in the
trigeminal nerve signaling circuit and the facial pain threshold
as physiological indicators related to mice pain, which have
objective bases for reflecting the pain intensity of mice [17].

3.2.1 Infraorbital nerve activity assay
Initially, we randomly allocated the mice into six groups, with
three mice in each group. Our approach to random grouping
was as follows: assigning a unique number to each of the 18
mice and subsequently utilizing the random number generator
in Excel to allocate the mice into six groups in a randomized
manner. The mice were then placed into an anesthesia box,
and gas anesthesia was administered, with an induction dose
of 2–5 levels and a gas flow of 1–1.5 L/min. Anesthesia was
assessed based on the breathing of the mice. The scalp was
shaved, and the skin was prepared along the right gingival
buccal margin, at the level of the first molar, and a longitudinal
incision of approximately 1 cmwas made towards the nose and
mouth to expose the infraorbital nerve (IoN) and surrounding
tissue. Next, 0.5 µL of Cal-520 AM calcium-sensitive dye was
aspirated using a microinjector. Themicroinjector was secured
on the brain stereotaxic instrument, inserted into the designated
site of the infraorbital nerve, and left for a while before the
injection was performed using the microinjection pump.
After completion, the needle was left in place for approx-

imately 5–10 minutes before being withdrawn at a constant
speed. The room temperature was maintained at approxi-
mately 28 ℃ throughout the procedure, and sufficient food
and water were provided before and after the surgery. All
procedures were carried out under sterile conditions. Half
an hour following awakening from anesthesia, fluorescence
imaging was conducted on the infraorbital nerves of the mice
using imaging software (GINKGO MTPM V1.0, Transcend
Vivoscope Biotech Co., Ltd, Beijing, China). The imaging

parameters were adjusted to ensure clear visualization of the
IoN in the visual field, as shown in Fig. 2. The mice (n = 18, 9
male and 9 female) were divided into six groups: 0.9% group,
6% group, 12% group, 18% group, 25% group and 30% group.
During the experiment, the corresponding concentration of
NaCl (Sodium Chloride) solution was dropped onto the cornea
of the mice, and infraorbital nerve activity was recorded on
video at 10 Hz simultaneously. Throughout the experimental
procedure, recording the mice’s body weight was essential.
Mice exhibiting weight fluctuations exceeding 10% were ex-
cluded from the experiment. Furthermore, mice displaying
adverse anesthetic reactions or surgical complications were
also subject to exclusion.
The activity of IoN (ΔF/F) was calculated from videos by

the following formula : (1) FROI = Fraw − Fb, where FROI

is the intensity trace subtracted from the video background,
Fraw is the average intensity curve on the ROI (region of
interest) of IoN body, Fb is the baseline fluorescence of the
background, by the minimum value of theMosaic image stack;
(2)Fcon = Fring − Fb, where Fcon for z axis pollution
intensity, Fring for IoN ring area around the original strength;
(3) Fsig = FROI −α×Fcon, where Fsig represents the actual
activity of IoN after subtracting the background drift and Z-
axis pollution, and αrepresents the pollution level, α = 0.9 in
this paper; (4) ∆F/F = Fsig/F0, where F0 is the baseline
values for FROI , FROI average estimate. Assumptions of
normality were tested with the D’Agostino-Pearson normality
test. All 2-group comparisons were calculated using Student’s
t-test (two-tailed, paired or unpaired), when data followed a
Gaussian distribution.

3.2.2 Facial pain threshold assay
We randomly selected another 18 mice and divided them into
six groups of three mice each. The mice were then subjected
to gas anesthesia in an anesthesia box, with an induction
anesthesia dose of 2–5 levels and a gas flow of 1–1.5 L/min.
After the mice were anesthetized, they were immobilized on
a brain stereotaxic apparatus. The scalp of the mice was
depilated, and the skin was prepared and sterilized. A custom
metal head post was fixed onto the mouse’s head using dental
cement adhesion. The room temperature was maintained at
around 28 ℃ during the entire operation, and sufficient food
and water were provided before and after the operation.
All procedures were carried out under sterile conditions.

Following a recovery period of one week after surgery, we
measured the facial pain threshold of mice using von Frey
filaments (0.002–1.4 g, Shanghai Yuyan Instruments Co., Ltd).
A series of von Frey filaments consisting of eight filaments
(0.02 g, 0.04 g, 0.07 g, 0.16 g, 0.4 g, 0.6 g, 1.0 g and 1.4 g) are
selected. Starting from the 0.02 g filament, the Up-and-Down
method [14, 18–20] is used to stimulate the mouse’s face. The
filament should be bent into a “C” or “S” shape and applied
for 6–8 seconds. The mouse’s withdrawal response is then
observed and recorded: a negative response “O” is recorded
if there is no response from the mouse, and a positive response
“X” is recorded if there is a flinching or resistance response.
In the event of a negative response, the next larger von Frey
filament is used to stimulate the face. If there is a positive
response, the next smaller filament is applied, with a few
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FIGURE 1. The illustration of the data acquisition procedures. Two experiments were conducted to objectively assess
pain intensity in the TN mouse model: the infraorbital nerve activity assay and the mouse facial pain threshold assay. (a) Thirty-
six mice were divided into the IoN activity assay group (n = 18) and the facial pain threshold assay group (n = 18). The IoN
activity was measured by fluorescence microscopy in the first group, while the facial pain threshold was measured using von Frey
filaments in the second group. The results of these assays were used to establish objective pain grading criteria (ground truth). (b)
The facial expressions of 18 mice exposed to varying concentrations of saline are recorded using a video camera. A deep learning
model (TNPAN) proposed by this study is trained in a supervised manner for non-contact pain assessment.

FIGURE 2. The activity of IoN assays. (a) Result of IoN exposure. (b) The typical IoN result of fluorescent staining. Scale
bars, 5 mm. IoN: infraorbital nerve; FROI : the fluorescence intensity of the region of interest.
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seconds between each stimulation. This process is repeated
until “OX” or “XO” responses are observed. To obtain a
sequence of responses consisting of combinations of “O” or
“X”, four additional tests are conducted after the first “OX”
or “XO” response. The filament size used in this sequence is
recorded as the facial pain threshold of the mouse’s face. After
a one-minute interval, we stimulated the right cornea of each
mouse with a specific concentration (0.9%, 6%, 12%, 18%,
25%, 30%) of normal saline and then repeated the facial pain
threshold measurement using the same protocol as before.

3.2.3 Video capture
First, 18 mice were sequentially placed into an anesthesia box
and subjected to gas anesthesia. The induction dose was 2–5,
and the gas flow rate was 1–1.5 L/min. The level of anesthesia
in each mouse was determined based on its respiratory condi-
tion. After anesthesia, the mice were fixed on a stereotactic
apparatus and a metal headpiece was mounted on their head.
The scalp of the mouse was shaved and sterilized, and then
the scalp was cut to expose the skull. The customized head
post was affixed to the mouse’s head using dental cement. The
entire surgical procedure was carried out at a room temperature
of around 28 ℃, and the mice were provided with sufficient
food and water before and after surgery. All procedures
were performed under sterile conditions. After surgery, the
mice were allowed to recover for one week to eliminate any
potential influence of surgery on the acute trigeminal neuralgia
experiment. The experiment was conducted after the recovery
period.
Before the experiment, an infrared camera (CY-UB300,

2048 × 1536 pixels, 30 Hz frame rate) was positioned beside
the left facial area of the mouse, with the jaw facing 90◦ away
from the camera direction, and a distance of approximately 5
cm between them, as shown in Fig. 3. The mice were allowed
to adapt to the experimental environment for 10 minutes.
The next step involved dividing the 18 mice into six groups,
and each group was subjected to the instillation of specific
concentrations (0.9%, 6%, 12%, 18%, 25%, 30%) of saline
solution (2 mL each time) on the right cornea to simulate acute
TN. After the saline solution was applied, facial videos of the
TN mice were recorded for 10 minutes. After the experiment,
the mouse cornea was washed with water to avoid irreversible
damage caused by high-concentration salt water.

FIGURE 3. The experimental apparatus for recording
facial expressions of TN mouse model. NaCl: sodium
chloride.

3.3 Image pre-processing pipeline and
human annotation
Although the heads of the mice were immobilized in this
experiment, there were still slight movements of the face
during imaging, and there were differences in the background
among different mice. To eliminate the influence of the factors
mentioned above, this study cropped the images to only include
the facial region of the mouse, and uniformly resized the
cropped images to a size of 512 × 512 pixels. In addition, we
removed excessively blurry images caused by mouse move-
ment to improve the overall image quality of the dataset. After
the above pre-processing pipeline, 9882 images are available
for NaCl 0.9% group, 9516 images are available for NaCl 6%
group, 10,437 images are available for NaCl 12% group, 6273
images are available for NaCl 18% group, 9408 images are
available for NaCl 25% group, 5544 images are available for
NaCl 30% group. To balance the sample size for each pain
level and reduce the cost of the video labeling. We selected
3000 images each from the no pain (NP) group, moderate pain
(MP) group and high pain (HP) group.
To introduce the dynamic behavioral characteristics of the

TN mouse model, this study invited five experienced experi-
menters to perform meticulous manual annotation of the pupil
and forelimb key points of each mouse in the image, as shown
in Fig. 4. We annotated a total of eight key points, with four
marked at the upper (pupil1), lower (pupil2), left (pupil3), and
right (pupil4) boundaries of the pupil. The other four key
points were labeled at the front end (limb1), mid-front (limb2),
mid-back (limb3), and rear end (limb4) of the forelimb.

FIGURE 4. The annotation results of mouse pupils and
forelimbs. (a) the original image of the mouse face. (b) yellow
dots in the orange region indicate the annotation results of
mouse pupils, and yellow dots in the blue region indicate the
annotation results of mouse forelimbs.

Each image in the dataset is annotated with a pain grading
label (NP, MP, HP) and the positions of eight key points related
to pain behavior. The set of 9000 images with pain labels
and mouse keypoint annotations constitutes an objective pain
grading dataset.

3.4 Proposed trigeminal neuralgia pain
assessment network
The proposed trigeminal neuralgia pain assessment network
(TNPAN) consists of two parts, the motion awareness network
(MAN) and the three-dimensional deep convolutional neural
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FIGURE 5. An overview of the trigeminal neuralgia pain assessment network (TNPAN), which consists of two neural
networks: motion awareness network (MAN) and 3D-CNN. Each cube is a convolutional layer, and the black line is ReLU
connections, while the arc shows the shortcut connection. The two networks are cascaded by a fully connected layer to evaluate
the pain intensity with a fixed model reuse strategy. 3D-CNN: 3D convolutional neural network.

network (3D-CNN) as shown in Fig. 5. TheMAN is employed
to extract the dynamic behavioral characteristics of the TN
mouse, providing identification results for the key points of
the mouse’s pupils and forelimbs. The 3D-CNN is utilized to
extract the static texture characteristics of the mouse’s face,
specifically to provide the texture and structural features asso-
ciated with pain. Finally, the features from the two channels of
MAN and 3D-CNN are fused in a cascaded manner to provide
the final pain assessment results.
MAN is composed of a ResNet-50 [21] and eight

deconvolutional layers. When ResNet was first proposed
in 2015, it achieved first place in the ImageNet image
classification task, and subsequently its excellent performance
led to its widespread application in various object recognition
tasks based on convolutional neural networks, such as
ArtTrack [22], DeepCut [23], and DeepCut2 [24]. Therefore,
in this study, we introduced ResNet-50 as a keypoint detector
into MAN. The integrated framework is illustrated in Table 1.
In order to output the detection results of the mouse’s pupil
and key points of the forelimbs, we replaced the softmax layer
after the “Conv 2d-5-x” convolutional layer in ResNet-50
with eight deconvolutional layers, with each deconvolutional
layer outputting a score map corresponding to the key point.
The values in the score map reflect the probability of the
keypoint being located at a specific position [23, 24]. To
enhance the robustness of MAN, during training, we labeled
the area within 5 pixels of the key points as 1 and the area
outside 5 pixels as 0. To improve the performance and speed
up the convergence of MAN, in this study, the initialization
parameters of ResNet-50 in MAN were derived from the
pre-trained parameters on ImageNet.
During training, stochastic gradient descent (SGD) [25] was

utilized to minimize the cross-entropy loss function between
the predicted results of MAN and the ground truth. In the

experiments where MAN was used for pain assessment alone,
we introduced eight readout layers after the deconvolution
layers in MAN to read the coordinates of the eight key points
of the mouse. The final activation layer was a softmax layer to
ensure that the sum of the probabilities of the pain assessment
results was one.
The 3D-CNN was primarily utilized to extract the static

texture characteristics of the mouse facial region, comprising
six 3D convolutional layers, three max-pooling layers, and
one fully connected layer. The network architecture is illus-
trated in Table 2. Each 3D convolutional layer consists of
several 2D convolutional kernels with time parameters. The
2D convolutional kernels with time parameters have a wider
dynamic range, providing sufficient details for representing
pain features. The pooling layers serve as downsampling
layers, preserving the most important features while reducing
the number of features and parameters in the model. The role
of the fully connected layer is to condense the feature maps
extracted by the preceding convolutional layers into a single
vector. The feature map output by 3D-CNN is a tensor, with
the input of H ×W × C and output of H ×W × C

′ .
Where H and W represent the height and width of the

feature map, and C and C’ denote the input and output channel
numbers. The size of the 3D convolution kernel is h ×w × c,
where h andw indicate the height and width of the kernel, and c
denotes the temporal depth. The output of each convolutional
kernel can be represented as:

y = F
(
x|W, {Wdn

}Nn=1

)
Where W represents the weights of the 3D convolutional

neural network (CNN) under fixed temporal parameters, while
Wdn

N
n=1 denotes a series of parameters in the 3D-CNN. It
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TABLE 1. Deep learning architecture for motion awareness network.

Layer Output shape Activation Kernel size Stride

Conv 2d_1 256 × 256 × 64 ReLU 7 × 7, 64 2

Conv 2d_2_x 128 × 128 × 256 ReLU



1 × 1, 64

3 × 3, 64

1 × 1, 256

 × 3 2

Conv 2d_3_x 64 × 64 × 512 ReLU


1 × 1, 128

3 × 3, 128

1 × 1, 512

× 4 2

Conv 2d_4_x 32 × 32 × 1024 ReLU



1 × 1, 256

3 × 3, 256

1 × 1, 1024

 × 6 2

Conv 2d_5_x 32 × 32 × 2048 ReLU


1 × 1, 512

3 × 3, 512

1 × 1, 2048

× 3 1

Deconvolutional Layers 64 × 64 × 8 - - -

Readout Layers 2 × 8 - - -

Fully Connected Layer 16 × 1 - - -

Softmax Classifier 3 × 1 - - -

TABLE 2. Deep learning architecture for 3D-CNN.

Layer Output shape Activation Kernel size Stride Num of kernel

Conv 3d_1 16 × 512 × 512 × 32 ReLU 3 × 3 × 3 1 × 1 × 1 32

Conv 3d_2 16 × 512 × 512 × 32 ReLU 3 × 3 × 3 1 × 1 × 1 32

Max Pooling_1 8 × 256 × 256 × 32 - - 2 × 2 × 2 -

Conv 3d_3 8 × 256 × 256 × 64 ReLU 3 × 3 × 3 1 × 1 × 1 64

Conv 3d_4 8 × 256 × 256 × 64 ReLU 3 × 3 × 3 1 × 1 × 1 64

Max Pooling_2 4 × 128 × 128 × 64 - - 2 × 2 × 2 -

Conv 3d_5 4 × 128 × 128 × 128 ReLU 3 × 3 × 3 1 × 1 × 1 128

Conv 3d_6 4 × 128 × 128 × 128 ReLU 3 × 3 × 3 1 × 1 × 1 128

Max Pooling_3 2 × 64 × 64 × 128 - - 2 × 2 × 2 -

Fully Connected Layer 16 × 1 - - - -

Softmax Classifier 3 × 1 - - - -

should be noted that the output of a convolutional neural
network needs to be activated by the ReLU non-linear function.
F represents all convolution operations and can be expressed
as:

F (x) =

N∪
n=1

Wdn
σ (Wx)

Here, σ represents the ReLU non-linear function, and U
represents the concatenation operation. In each convolutional
module, the featuremap x from the previous layer is convolved
with the convolutional kernel, resulting in N new feature maps
S1, S2,…, SN , where Sn ∈ RH×W×Cn . Each intermediate
convolutional layer has a fixed temporal parameter and spatial
size. These intermediate feature maps Sn

N
n=1 are concatenated

to form a simple tensor.
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E =
1

K

K∑
k=1

|ôk − ok| 22

Here, K denotes the length of a given sequence of images.
The output of the final convolutional layer is flattened and
connected to a fully connected layer of size 1 × 16. In
experiments using 3D-CNN for pain assessment alone, the
output layer had three dimensions representing three different
pain intensities (0, 1, 2). The final activation layer is a softmax
layer, ensuring that the sum of the probabilities of the pain
assessment results is equal to 1. During the training of 3D-
CNN, the cross-entropy loss function and SGD optimization
algorithm are utilized. The initial learning rate is set to 0.0001,
and the dataset is split into a training set and a test set with an
80% to 20% ratio. The epoch value is set to 100, and the batch
size is set to 32. The training is performed end-to-end.
The final step is to cascade MAN and 3D-CNN using the

fixed model reuse (FMR) strategy, which involves reusing the
learned parameters of the 3D-CNN while only updating the
parameters of MAN during the training process. During the
concatenation process, two key considerations are applied: (1)
fixed model reuse: since MAN is responsible for providing the
key point recognition results of TN mice, the network weights
of MAN are no longer updated during the training process of
TNPAN. (2) Design of fully connected layer: since the decon-
volution layer of MAN outputs a score-map, to concatenate the
score-map with the features extracted by 3D-CNN, we added
eight readout layers after MAN, which respectively output
the coordinates of the eight key points of TN mice. These
coordinates are flattened into a 1× 16 vector and concatenated
with the fully connected layer of 3D-CNN to form a 1 × 32
vector. The last layer of TNPAN is a softmax activation layer,
which ensures that the sum of probabilities of pain evaluation
results (0 for no pain, 1 for moderate pain, and 2 for high pain)
equals to 1.
During the training of MAN, the dataset containing 9000

labeled images of mouse pupils and forelimb key points was
used. The dataset was split into a training set (80%) and a
test set (20%), and the evaluation metric for the MAN network
was the error, which was defined as the pixel distance between
the model’s predicted key points and the ground truth key
points. After training the MAN network on a dataset of 9,000
annotated images of mice pupils and forelimb key points, the
fixed model reuse (FMR) strategy was employed to cascade
the MAN network with the 3D-CNN to form TNPAN. Then,
the stochastic gradient descent (SGD) algorithm was used to
optimize the network parameters of TNPAN, with only the
parameters of the 3D-CNN and fully connected layers being
adjusted. In the experiments of using MAN, 3D-CNN and
TNPAN separately for pain assessment, the evaluation metrics
of the models were accuracy (%), precision (%), recall (%), F1
score and area under the curve (AUC).
All training and evaluation were performed on a Windows

10 Professional server with an NVIDIA 1080Ti GPU (Graph-
ics Processing Unit) and an AMD Ryzen 7 2700X Eight-Core
Processor 3.70 GHz CPU (Central Processing Unit). The

programming language used was Python 3.6 produced by the
Python Software Foundation (PSF, which is registered in the
United States), and the deep learning framework used was
PyTorch 1.9. The training process was repeated three times,
with an evaluation conducted after each training cycle. The
final evaluation result is the average of the three evaluations.

3.5 Construction of the IoN-CCI mouse
model and data collection

In machine learning, although model accuracy is undoubtedly
essential, it is crucial not to overlook the model’s generaliz-
ability. To evaluate the generalizability of TNPAN, this study
aimed to apply TNPAN to the mouse model of trigeminal neu-
ralgia induced by IoN-CCI surgery. The precise experimental
protocol is outlined as follows: (1) Six C57BL/6J mice (3
female and 3 male) with a body weight ranging between 30
g to 50 g and aged two weeks were included in the study,
of which three mice underwent IoN-CCI surgery, while the
remaining three mice underwent sham surgery. All enrolled
mice were initially healthy. The strategy for random grouping
was the same as described in section 3.3, resulting in the
random allocation into Sham and IoN-CCI groups. (2) The
standard procedure for IoN-CCI involves depilating the mouse
and making a vertical incision, approximately 1 cm in length,
along the right gingival cheek margin towards the nose. The
IoN is exposed as shown in Fig. 6a, and the surrounding tissue
is dissected, followed by the application of a 4.0 chromium
wire to loosely ligate the nerve, with the tension reduced
only enough to delay nerve conduction without completely
blocking it, while still maintaining blood circulation. Fi-
nally, the incision is closed with a 4.0 silk suture after the
surgery. (3) The mouse’s scalp was shaved and prepared
for skin disinfection. Afterward, the scalp was removed to
expose the skull. A specialized metal headpiece, as depicted
in Fig. 6b, was affixed to the skull using dental cement. (4)
The sham group underwent a minimally invasive incision on
the mouse’s face area without any manipulation of the IoN. (5)
The objective of attaching the head post to the mouse was to
stabilize the head, which was conducted under temperature-
controlled conditions of about 28 ℃. The mice were given
sufficient food and water before and after the surgery, and all
the procedures were carried out in a sterile environment. (6)
Before imaging, position the infrared camera adjacent to the
left face of the mouse such that the mouse’s face is away from
the camera at a 90-degree angle, with a distance of around 5
cm. (7) The camera was activated to capture a 10 min video of
the left facial region of the mouse. The recorded video was
subjected to pre-processing steps identical to those detailed
in the corresponding section 3.4. (8) To evaluate the facial
pain threshold in the IoN-CCI mouse model, images of the
facial region were captured on postoperative days 1, 8 and
15, followed by pain threshold measurement. The specific
steps for the measurement are as follows: a series of von Frey
filaments consisting of eight filaments (0.02 g, 0.04 g, 0.07 g,
0.16 g, 0.4 g, 0.6 g, 1.0 g and 1.4 g) are selected. Starting from
the 0.02 g filament, the Up-and-Down method [14, 18, 19] is
used to stimulate the mouse’s face. The filament should be
bent into a “C” or “S” shape and applied for 6–8 seconds. The
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FIGURE 6. The experimental protocol for the infraorbital nerve (IoN) constriction surgery. (a) The location of the IoN
on the mouse was marked with a black arrow. (b) A metal head post was placed on the mouse’s head to immobilize it, as indicated
by the red dashed box. (c) The site of the nerve constriction on the right side of the mouse’s face was identified and marked by
the red dashed box.

mouse’s withdrawal response is then observed and recorded:
a negative response “O” is recorded if there is no response
from the mouse, and a positive response “X” is recorded if
there is a flinching or resistance response. In the event of a
negative response, the next larger von Frey filament is used
to stimulate the face. If there is a positive response, the next
smaller filament is applied, with a few seconds between each
stimulation. This process is repeated until “OX” or “XO”
responses are observed. To obtain a sequence of responses
consisting of combinations of “O” or “X”, four additional tests
are conducted after the first “OX” or “XO” response. The
filament size used in this sequence is recorded as the facial pain
threshold of the mouse’s face. Subsequently, t-tests were em-
ployed to examine the significant differences between the sham
and IoN-CCI groups on the first, eighth and fifteenth days.
Additionally, the congruence of predictive outcomes regarding
mouse pain intensity using TNPAN and measurements derived
from the von Frey filaments was assessed for consistent trends
of variation.

4. Results and discussion

In this section, we initially constructed a pain grading dataset
by combining an infraorbital nerve activity assay and a facial
pain threshold assay. We utilized the objective pain grading
dataset as the ground truth for model training, thereby over-
coming the limitations associated with subjective assessments
in prior investigations. Then, we investigated the performance
of MAN, 3D-CNN and TNPAN, respectively. All the deep
learning models are implemented in Python using PyTorch
[26] as the backend. Finally, we validated the generalization
capability of TNPAN using the IoN-CCI mouse model.

4.1 The results of pain grading
The accuracy and objectivity of pain grading labels play a
crucial role in determining the performance of pain assessment
models. Prior models have frequently relied on subjective
evaluations of researchers as the supervisory signal during
training, lacking objective criteria. In this section, we aim
to construct a pain grading dataset that is both objective and
accurate, derived from the outcomes of the infraorbital nerve

activity assay and the mouse facial pain threshold assay (sec-
tion 3.3).
The infraorbital nerve (IoN) is a crucial component of the

trigeminal signaling pathway, being a significant branch of
the trigeminal nerve. For an extended period, researchers
[27, 28] have widely believed that the aberrant activation of
the trigeminal nerve signaling pathway is frequently closely
associated with trigeminal neuralgia. Thus, by scrutinizing
the extent of abnormal IoN activity elicited by hypertonic
saline stimulation, the pain state of the mouse model can be
assessed. In this investigation, six distinct concentrations of
NaCl solution (0.9%, 6%, 12%, 18%, 25% and 30%) were
applied to the cornea of mice to induce aberrant excitation
within the trigeminal nerve signaling pathway. The findings
depicted in Fig. 7 demonstrate that the activity of IoN did not
significantly differ from that of the control groupwhen induced
with 0.9% physiological saline (t-test, p = 0.263, n.s.). When
using 6%, 12% and 18% NaCl solutions to stimulate the mice,
a significant difference in the activity of IoN compared to the
control group was observed (p < 0.01). However, one-way
ANOVA (analysis of variance) results showed no significant
difference among these three concentrations (p = 0.547, not
significant). Moreover, in response to the stimulation with
25% and 30% NaCl solutions, the IoN demonstrated aberrant
excitation, which not only exhibited significant differences
when compared to the control group (p < 0.01) but also dis-
played higher levels of excitation than the 18% concentration
(p < 0.01).
It can be observed that the stimulation of the mouse cornea

with six different concentrations of NaCl solution did not result
in six distinct levels of excitation in the IoN. The relationship
between the concentration of NaCl solution and the activity of
IoN is not strictly linear, and it may exhibit a stair-step effect, as
demonstrated in Fig. 7. Specifically, when the concentration of
NaCl solution reaches a certain threshold, the excitation level
of IoN may jump to the next level.
Next, we turned our attention to the facial pain threshold

in TN mice. In 1965, Melzack and Wall [29] introduced the
“gate control theory of pain”, which has since been expanded
into various sub-theories. The fundamental concept of this
theory is that nociceptors becomemore sensitive during painful
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FIGURE 7. The activity of the IoN was quantified by measuring the fluorescence intensity ratio ΔF/F. The error bars
represent the standard error of the mean. No statistically significant difference was observed between the control group and the
0.9% saline group (p = 0.263, n.s). The significant differences among the 6%, 12% and 18% saline groups were determined by
one-way ANOVA (p = 0.547, n.s). A significant difference was found between the 6% and 0.9% saline groups as determined by
t-test (***p< 0.01). No significant difference was observed between the 25% and 30% saline groups using t-test (p = 0.106, n.s).
However, the excitation levels were significantly higher in the 25% and 30% groups compared to the 18% group (***p < 0.01).
IoN: infraorbital nerve; NaCl: sodium chloride.

FIGURE 8. The facial pain thresholds of TN mouse model. The error bars represent the standard error of the mean.
The facial pain threshold of TN mice did not show significant differences compared to the control group under the 0.9% saline
condition (p = 0.799, n.s). However, under the 6%, 12% and 18% saline conditions, the facial pain thresholds of mice significantly
decreased compared to 0.9% (**p < 0.05), with no significant difference observed among the three groups (p = 0.394, n.s).
Moreover, under the 25% and 30% stimulation conditions, the facial pain thresholds of the mice further decreased compared to
18% (***p < 0.01), with no significant difference between the two groups (p = 0.742, n.s). These findings support the notion of
a stepwise effect between the concentration of saline solution and the intensity of pain. NaCl: sodium chloride.
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conditions, leading to a lower pain threshold than normal.
Consequently, measuring the facial pain threshold in mouse
models can be used as an indirect measure of their pain status
[30].
The experimental findings depicted in Fig. 8 indicate that

the facial pain threshold of mice did not differ significantly be-
tween the 0.9% saline group and the control group (p = 0.799,
n.s.). Stimulation with 6%, 12% and 18% saline solutions led
to a significant reduction in the facial pain threshold of mice
compared to the control group (p < 0.01). However, one-
way ANOVA analysis did not reveal any significant difference
among the three groups (p = 0.394, n.s.). Under the conditions
of 25% and 30% saline solutions, the facial pain threshold
of mice exhibited a significant decrease compared to 18%,
indicating a stepwise effect between the concentration of saline
solution and the intensity of pain (p < 0.01). However, no
significant difference was found between the 25% and 30%
groups (p = 0.742, n.s). These results support the existence of
a staircase effect in the relationship between the concentration
of saline solution and pain intensity.
The above experimental results demonstrate that by using

six different concentration gradients (0.9%, 6%, 12%, 18%,
25%, 30%) of hypertonic saline to stimulate the mouse cornea,
acute trigeminal neuralgia of varying pain grades can be in-
duced. This study classified the pain levels of the TN mouse
model based on the degree of infraorbital nerve excitation and
facial pain threshold. The pain was categorized into three
levels: no pain (NP) for 0.9% saline, moderate pain (MP) for
6%, 12% and 18%, and high pain (HP) for 25% and 30% saline
solutions. Then, we selected 3000 images from each pain
level to construct a pain grading dataset, providing objective
evidence for pain assessment. Each image is assigned a pain
grade as the ground truth. During the training of the MAN, we
enlisted the assistance of five experts to annotate the pupils
and forelimbs of the mice for this pain grading dataset (as
described in section 3.4). When training the models, the entire
dataset was divided into 80% training dataset and 20% test
datasets. All data are shown as mean ± SEM (standard error
of the mean). Statistical analyses were done with Prism 8.1
(GraphPad, GraphPad Software LLC, San Diego, CA, USA).
Comparisons were conducted with Student’s t-test to compare
Gaussian distributions. Two-way ANOVA with repeated mea-
sures for multiple comparisons. When the p value < 0.05, the
results were considered statistically significant.

4.2 Performance of motion awareness
network (MAN)
The MAN was utilized to extract the dynamic behavioral
characteristics of TN mice, which comprises two essential
components: ResNet-50 and deconvolutional layers. The
ResNet-50 is used as the feature detection module, which
has been extensively trained on large-scale datasets such as
ImageNet and has achieved excellent results in tasks such as
object detection and human pose recognition [21]. Therefore,
it is used to detect the positions of the mouse’s pupils and
forelimb key points. In order to obtain the coordinate positions
of the key points fromMAN, eight deconvolutional layers [23],
and eight readout layers were incorporated after the ResNet-

50 module. Deconvolutional layers are used to up-sample the
visual information and produce spatial probability densities.
The training process of the MAN is depicted in Fig. 9, and

the loss gradually converged after around 500 k iterations. To
evaluate the accuracy of the MAN, we generated a plot of
the error distribution between the predicted coordinates of the
eight key points by MAN and the ground truth coordinates (as
demonstrated in Fig. 10). The errors were mainly concentrated
within a 3-pixel range, indicating that the accuracy of MAN in
recognizing the facial pupil and forelimb key points of mice
is comparable to that of manual annotation. At present, the
MAN based on ResNet-50 has attained a high level of accuracy
in predicting the positions of the mouse’s pupil and forelimb
key points, which satisfies the demands for extracting dynamic
behavioral characteristics of the TN mouse.

FIGURE 9. Corresponding RMSE between the human
and the predicted results on training and test images
(80%/20% splits). Human variability, as well as the 95%
confidence interval, are depicted in black and gray. RMSE:
root-mean-square error.

4.3 Performance of 3D convolutional neural
network (3D-CNN)
The objective of this section is to evaluate the efficacy of
various 3D-CNN architectures in extracting static texture char-
acteristics of the face of the TN mouse model. The perfor-
mance of the models will be evaluated based on accuracy,
precision, recall, F1 and AUC.We aim to optimize the network
structure of the 3D-CNN by adjusting its hyperparameters. We
are aware that the size of the spatial convolutional kernel in
3D convolutional kernels determines the receptive field of the
model. This, in turn, determines the model’s ability to capture
information and plays a crucial role in extracting information
and achieving effective feature representation. Thus, this
study conducts a series of experiments to explore the optimal
convolutional kernel structure by varying the size of the spatial
convolutional kernel.
Table 3 shows the accuracy of 3D-CNN in pain assess-

ment tasks with different spatial kernel sizes. The results
demonstrate that the model attained the maximum accuracy
when the spatial convolutional kernel size was set to 3 × 3.
The findings indicate that larger spatial kernel sizes do not



88

FIGURE 10. Error comparison of eight body points between the model prediction and labels. The first row from left
to right are limb1, limb2, limb3 and limb4, respectively. The second row from left to right is pupil1, pupil2, pupil3 and pupil4,
respectively.

necessarily result in superior performance. As the size of the
spatial kernel increases from 5 × 5 to 11 × 11, the accuracy
of the model does not improve but instead decreases. This
suggests that excessively large spatial kernels capture more
coarse information, which can undermine the model’s capacity
to make precise evaluations.

TABLE 3. Comparison of the 3D-CNN model’s
accuracy (%) on the different kernel sizes with fixed

temporal depth = 16.
Kernel Size 3 × 3 5 × 5 7 × 7 9 × 9 11 × 11
Accuracy (%) 82.84 77.73 76.98 74.60 72.46

In addition to the spatial kernel size, prior research [31, 32]
has also highlighted that the temporal depth of 3D kernels can
impact the model’s ability to represent spatiotemporal features
and subsequently influence its inferential ability. Proper tem-
poral depth is essential for capturing facial pain features in
the TN mouse model. Therefore, this section also investigates
the influence of different temporal depths of 3D convolutional
kernels on the model’s accuracy. The results presented in
Table 4 indicate that among the temporal depths examined
(3, 5, 8, 16, 32 and 40), the 3D convolutional kernel with
a temporal depth of 16 attained the highest accuracy for the
model. This suggests that setting the time depth of the 3D
convolutional kernel to 16 can efficiently capture the short-
, mid- and long-range spatiotemporal features of TN mouse
in the pain assessment task, leading to effective expression
of static texture characteristics. However, excessively long
time windows, such as those with a time depth of 32 or 40,
can introduce additional irrelevant noise and thus decrease the

model’s accuracy. Conversely, using too short a time window,
such as one with a time depth of 3, 5 or 8, may not provide
sufficient information for pain assessment.

TABLE 4. Comparison of the 3D-CNN model varying
temporal depths with fixed kernel size = 3 × 3.

Temporal
Depth

3 5 8 16 32 40

Accuracy
(%)

63.63 77.91 78.87 82.84 78.31 76.46

According to the experimental findings presented in this sec-
tion, the optimal configuration for the 3D-CNN was attained
when the spatial kernel size was set to 3 × 3 and the temporal
depth was set to 16, resulting in the highest accuracy for
the pain assessment task. In the subsequent experiments, we
maintain the same set of hyperparameters, including a spatial
convolutional kernel size of 3 × 3 and a temporal depth of
16. The remaining training hyperparameters are set as follows:
a batch size of 16, an initial learning rate of 0.0001, and a
maximum of 100 epochs.

4.4 Performance of trigeminal neuralgia
pain assessment network (TNPAN)
This section aims to evaluate the performance of the trigeminal
neuralgia pain assessment network (TNPAN) and compare it
with four baseline models. The architecture of TNPAN is
described in section 3.5. The first baseline model, as described
in paper [33], is the HOG-SVM (support vector machine)
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approach. This method involves extracting HOG features
from the mouse’s face using the HOG algorithm, followed
by utilizing SVM for pain assessment. The second baseline
model, HOG-NN (neural network), is similar to the first one
as it also extracts HOG features from the facial region of
the mouse and utilizes a shallow neural network for pain
assessment. The neural network comprises two hidden layers
implemented with the ReLU function and an output layer
implemented with the softmax function. The third baseline
model proposed by Tuttle et al. [9] uses facial images of mice
as input and employs a deep neural network to output the pain
assessment results. The fourth baseline model proposed by
Vidal et al. [10] comprises twomodules, namely, an eye socket
recognition module and a pain evaluation module.

To ensure consistency in the comparison results, all four
baseline models were trained on the same dataset and hardware
resources. The training process was repeated three times,
and the evaluation metrics were calculated as the mean of the
results from the three training runs. To further investigate the
respective contributions of the two components (MAN and 3D-
CNN) in TNPAN towards pain assessment, in addition to com-
paring with previous methods, a series of ablation experiments
were conducted where only MAN or 3D-CNN was utilized for
pain assessment. The dataset and training resources used in
the experiments are consistent with those used in the previous
experiments.

The results are presented in Table 5, which indicate that the
proposed TNPAN obtains the highest accuracy of 92.27%, as
well as the highest precision and recall, when compared to
the four baseline models. The results suggest that TNPAN
surpasses previous approaches in the pain assessment of TN
mice. To explore the significance of dynamic behavioral char-
acteristics of TN mice in pain assessment, this study compared
the accuracy of utilizing only MAN with that of TNPAN.
The results revealed that incorporating the fixed model reuse
strategy to consider the dynamic behavioral characteristics of
mice enhanced the accuracy of the model by 22.79%. These
findings demonstrate that the dynamic behavioral character-
istics of TN mice play a crucial role in pain assessment.
Similarly, we investigated the role of the TN mouse’s static
texture characteristics in pain assessment. The results showed
that TNPAN achieved a 9.43% improvement in accuracy com-
pared to using only 3D-CNN, indicating the importance of
the static texture characteristics of the mouse’s face in pain
assessment. Interestingly, the observation that the accuracy of
using only 3D-CNN is 13.36% higher than using only MAN
is noteworthy, as it suggests that the static texture character-
istics of the mouse face are more influential than the dynamic
behavioral characteristics in pain assessment. This could be
attributed to the fact that mice engage in various non-pain-
related behaviors, such as grooming, besides wiping their eyes
when experiencing pain, which may result in misclassification
by the model.

Overall, the pain assessment of TN mice can only be ac-
curately performed by synergistically utilizing both dynamic
behavioral characteristics and static texture characteristics.

4.5 The performance of TNPAN in the
IoN-CCI mouse model

In the field of machine learning, a model’s practicality is
determined by its generalization ability. To evaluate the gener-
alization ability of TNPAN, this study conducted a validation
on the IoN-CCI mouse model. The results, as illustrated in
Fig. 11, exhibit a persistent decline in facial pain threshold over
time in the IoN-CCI mouse model. On postoperative days 8
and 15, a significant difference in facial pain threshold was
observed between the IoN-CCI mouse model and the sham-
operated group (p < 0.01). These findings suggest that facial
pain intensity in the mice progressively increased, possibly due
to the inflammatory response in the facial region of the mice
[11]. Next, TNPAN was applied to the IoN-CCI mouse model,
and it was found that during the initial stage of modeling,
the predictions of TNPAN for the IoN-CCI mice were in
agreement with those of the sham group. As time progressed,
the results of TNPAN on the IoN-CCI mice continued to
improve, reaching a level of moderate pain on day 8 and high
pain on day 15. The consistency between the predictive results
of TNPAN and the changing trend of facial pain threshold in
the IoN-CCI mouse model suggests the feasibility of TNPAN
application for pain assessment in this model, as well as the
generalization ability of TNPAN. Clinically, orofacial pain
encompasses various conditions including orofacial pain at-
tributed to disorders of dentoalveolar and anatomically related
structures such as dental pain, gingival pain and myofascial
orofacial pain, including primarymyofascial orofacial pain and
acute primary myofascial orofacial pain. The dual-channel
feature fusion strategy proposed in this study not only accounts
for static structural features but also encompasses dynamic be-
havioral features, which are relevant in pain conditions beyond
neuropathic pain. Hence, the potential applicability of TNPAN
extends to other orofacial pain disorders.

5. Conclusions

This study presents a non-contact trigeminal neuralgia pain
assessment network (TNPAN) based on dual-channel feature
fusion to mitigate the aforementioned limitations. Firstly, we
constructed an objective pain grading dataset, which remedied
the limitations of prior studies that relied on subjective eval-
uation as supervisory signals. Subsequently, a dual-channel
fusion strategy was utilized to extract both static texture char-
acteristics (3D-CNN) and dynamic behavioral characteristics
(MAN) from the facial region of mice, resulting in a substantial
improvement in the accuracy of pain assessment (92.27%). In
contrast to the deep learning-based models proposed by Vidal
and Neff [34, 35] and 3D-CNNs with fixed and uniform kernel
depths [36, 37], this study examined the performance of 3D-
CNNs with diverse hyperparameters to identify the optimal
network architecture. The results indicated that the 3D-CNN
could effectively capture the static texture characteristics of
the mouse face by configuring the spatial size of the 3D
convolution kernel to 3 × 3 and the temporal window size
to 16. The results of the ablation experiments demonstrated
that solely considering the dynamic functional features (MAN)
or the static structural features (3D-CNN) of TN mice did
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TABLE 5. Comparison of the TNPAN (depth = 16, kernel size = 3 × 3) accuracy (%), precision (%), recall (%), F1
value (%), and area under the curve (AUC) with other baseline models.

No. Model Structure Accuracy (%) Precision (%) Recall (%) F1 (%) AUC
1 HOG-SVM 61.11 53.08 61.12 54.07 0.704
2 HOG-NN 72.48 62.76 72.10 65.43 0.792
3 Tuttle et al. [9] 75.48 65.76 75.36 68.78 0.817
4 Vidal et al. [10] 79.30 69.81 79.42 73.15 0.845
5 Only MAN 69.48 74.81 70.31 72.49 0.824
6 Only 3D-CNN 82.84 73.86 82.76 77.25 0.871
7 TNPAN 92.27 86.45 92.48 89.14 0.942
MAN: motion awareness network; 3D-CNN: 3D convolutional neural network; TNPAN:
trigeminal neuralgia pain assessment network; AUC: area under the curve; HOG-SVM:
histogram of oriented gradients support vector machine; HOG-NN: histogram of oriented
gradients neural network.

FIGURE 11. The performance of TNPAN in the IoN-CCI mouse model. (a) Changes in facial pain threshold in the IoN-
CCI mouse model. (b) The predictive results of TNPAN for pain intensity at different time points in the IoN-CCI mouse model,
with NP indicating no pain, MP indicating moderate pain, and HP indicating high pain. *p < 0.05; **p < 0.01; ***p < 0.001;
n.s, not significant. IoN: infraorbital nerve; TNPAN: trigeminal neuralgia pain assessment network.

not yield satisfactory accuracy levels (69.48% and 82.84%,
respectively). A more accurate assessment of pain intensity
could only be achieved by comprehensively integrating both
the static texture and dynamic behavioral characteristics of the
TN mouse face.
To further explore the generalizability of TNPAN in pain

assessment, this study conducted experiments on the mouse
model of infraorbital nerve chronic constriction injury (IoN-
CCI). The prediction outcomes of TNPAN demonstrated that
the pain intensity of mice was initially low after conducting
the IoN-CCI operation, and it gradually intensified over time.
On the 15th day after the infraorbital nerve chronic constric-
tion injury surgery, the pain intensity reached its maximum
level. TNPAN’s predictions were consistent with the facial
pain threshold of mice determined by the von Frey filament
test, thus confirming the generalizability of TNPAN for pain
assessment.
The dual-channel feature fusion strategy for pain assessment

proposed in this study, which integrates static texture and dy-
namic behavioral characteristics, has substantial implications
for the advancement of pain assessment in the field. Further-

more, exploring the feasibility of applying this pain assessment
strategy to other species, such as primates, including monkeys,
represents a promising avenue for future investigation.
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