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This article reviews the existing literature of the common ana-
tomic and physiologic aspects of cluster headache and sleep-relat-
ed breathing disorders to point out evidence suggesting potential 
therapies beneficial for both maladies. A search of PubMed, as well 
as relevant textbooks, was conducted using the terms cluster, head-
ache, sleep, apnea, pain, and chronobiology to find any previously 
published work that may connect the two disorders. Relevant ref-
erences in the literature were also investigated. As a group, cluster 
headache patients tend to have a higher incidence of sleep-related 
breathing disorders as compared to the noncluster headache popula-
tion. While commonalities in anatomy and physiology exist, robust 
evidence linking the two disorders is currently lacking. Many people 
are unaware that they suffer with a sleep-related breathing disor-
der. The high incidence of these two disorders occurring together 
should prompt the clinician who treats cluster headache patients to 
be acutely aware that a yet undiagnosed sleep disorder may also be 
present. J OrOfac Pain 2011;25:291–297
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Headache and sleep disorders tend to be the most common 
complaints encountered in clinical health care practices.1 
indeed, the relation between headaches and sleep has been 

known for some time.2 Migraine, cluster headache (cH), and hypnic 
headache (HH) all appear related to sleep stages, which could be sug-
gestive of a chronobiologic pain disorder.3 cH, reportedly the most 
painful of the primary headache disorders, is a rare syndrome and 
displays unique clinical features.4 The attacks have been reported to 
occur during nocturnal sleep, either exclusively or very frequently in 
50% to 60% of cH patients.5–8 in most instances, the attacks occur 
during or around the time of rapid eye movement (rEM) sleep.9 cH 
is reported to be associated with a state of hyperactivation of the 
posterior hypothalamus.10–12 The posterior hypothalamus also plays 
a critical role in the inhibitory control of the mechanisms of rEM 
sleep.13,14

it is reported that approximately 50% to 80% of a heterogene-
ous pain population has a self-report of some type of sleep distur-
bance.15,16 Many of these patients will not necessarily report excessive 
daytime sleepiness.17 approximately 20% to 25% of men are af-
fected by obstructive sleep apnea (OSa) or upper-airway resistance 
syndrome (UarS).18 Sleep-related breathing disorders (SrBDs) tend 
to present on a continuum from UarS to snoring to partial obstruc-
tion lasting at least 10 seconds (hypopnea), to complete obstruction 
and cessation of airflow lasting at least 10 seconds (apnea).19,20 OSa 
is presently considered the second most common sleep disorder and 
is the most severe of the spectrum of  SrBDs,  affecting 3% to 7% of 
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adults.21 Hypoxia has been suggested as a potential 
factor for the triggering of attacks during cluster pe-
riods.22–24 SrBDs tend to be worse during rEM sleep, 
which could potentially explain why cH is often 
linked with this stage of sleep.1 Several case reports 
have demonstrated a positive outcome in cH pa-
tients when their SrBD was treated successfully.25–28 
This further suggests a correlation between these two 
disorders; however, studies such as those conducted 
by nobre et al29 demonstrated a different outcome. 

The purpose of this article was to review common-
alities in the anatomical and pathophysiological as-
pects of these disorders and the potential for a similar 
etiology. a search of PubMed as well as relevant text-
books was conducted using the terms cluster, head-
ache, sleep, apnea, pain, and chronobiology to find 
any previously published work that may connect the 
two disorders. relevant references in the literature 
were also investigated.

Anatomic and Physiologic  
Aspects of Sleep 

Sleep and pain are similar in that they are both high-
ly regulated, complex, and multifactorial processes 
involving multiple structures of the central and pe-
ripheral nervous systems. at the core of both entities 
is the midbrain.30 in the discussion of sleep anatomy, 
it is first necessary to delineate the structures respon-
sible for arousal and those involved in initiating and 
maintaining the sleep states. arousal mediators are 
primarily cholinergic and monoaminergic nuclei 
that interact with the thalamus and hypothalamus.31 
Two different arousal streams have been identified 
that appear to act separately yet in concert with 
one another.32 The first stream arises from the pe-
dunculopontine nucleus and the lateral tegmentum 
and acts to suppress sleep-promoting activity in the 
thalamus.32 The second stream is a more diffuse pro-
jection from the basal forebrain and brainstem to the 
hypothalamus.32 These excitatory projections have 
an effect on orexin which is important in both sleep 
induction and pain processing.33 Sleep is primarily 
regulated by a circadian mechanism originating in 
the suprachiasmatic nucleus (Scn) of the hypothal-
amus.34 This intrinsic mechanism is not dependent 
on physical activity. it is entrained by the light-dark 
cycle via retinal input and melatonin production 
from the pineal gland during the dark hours.34 in-
terestingly, the Scn also communicates with auto-
nomic structures of the hypothalamus, controlling 
processes such as corticosteroid homeostasis and 
thermoregulation, both important mechanisms in 
the sleep-wake homeostasis.35

Anatomic and Physiologic  
Aspects of Headache  

Sensory innervation of the head and face involves 
primarily the fifth cranial or trigeminal nerve 
(Tn).36 The specific portion of the Tn involved in 
the pain associated with headache is the ophthalmic 
or first division.37 The a-delta and c-fiber afferent 
of the ophthalmic division bring information from 
the intracranial vessels and the meninges to the 
trigeminal brainstem sensory nuclei including sub-
nucleus caudalis (Tnc).37 However, sensation from 
the cranial posterior fossa may also be mediated by 
cranial nerve 10 (cnX) and fibers from the dorsal 
root ganglion of c1-c3.38 

it is well known that pain and sleep are very 
closely related to mood and autonomic function.39,40 
This suggests that autonomic homeostasis has a sig-
nificant influence on the overall pain experience.41 
another integral part of the pain-modulating mech-
anism is the descending pain-control system. The 
human descending pain-control system consists of 
four tiers: the cortical and diencephalic systems, the 
mesencephalic periaqueductal grey (PaG) sites, the 
rostroventral medulla (rVM), in particular its nu-
cleus raphe magnus (nrM), and the spinal dorsal 
horn and medullary dorsal horn (ie, Tnc).42 Early 
studies by Mayer et al suggested that stimulation 
of  the PaG would selectively modulate neuronal 
responses to noxious stimuli but leave intact re-
sponses to non-noxious and tactile stimulation.43 
This view of preferential modulation has also been 
expressed by others.44,45 Other studies involving 
stimulation of the PaG or nrM, however, have 
demonstrated a nonselective inhibition of both non-
nociceptive and nociceptive neuronal responses in 
the dorsal horn.46–49 furthermore, while the inhibi-
tory system is involved in the opiate-related mecha-
nisms of pain control, it has also been described in 
other non-nociceptive functions such as sleep.50 This 
would suggest that raphe-initiated effects are not 
specific to inhibition of nociception, and is further 
indicated by findings that the PaG and nrM exert 
depressive effects also on trigeminal and spinotha-
lamic non-nociceptive neurons as well.51–54 Sessle et 
al demonstrated that the descending influences are 
also of importance in the regulation of respiration 
and buccopharyngeal reflexes.55 

There is also evidence that the descending con-
trol can be facilitory as well as inhibitory.56 review 
of the processes within the rVM suggests that the 
mechanisms for the bidirectional control of this sys-
tem are based on two groups of neurons known as 
On-cells and Off-cells.57 These cell clusters are se-
lectively recruited by higher brain centers important 
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in psychological stress, illness, and fright, to either 
inhibit or accentuate painful conditions.45 Several 
authors have demonstrated that, in some rat models, 
noradrenergic neurons in the locus coeruleus (Lc) 
innervate the dorsal horn and provide modulation 
of nociceptive signaling.58–62 The Lc and raphe nu-
clear complex (ie, PaG-rVM) are also involved in 
arousal and can produce inhibition of rEM sleep.63 

The PaG-rVM complex is especially interest-
ing in regard to sleep and headache. activity in 
this area has been said to produce behaviors simi-
lar to those seen in migraine headache.64 it has 
been demonstrated that the PaG may play a role 
in modulating trigemino vascular inputs.65 also, the 
PaG-rVM complex is a rEM-off region when stim-
ulated by orexin.66 Orexin (type a) inhibits dural 
vasodilatation, thereby inhibiting the release of cal-
citonin gene-related peptide (cGrP) in trigeminal 
neurons.67 Orexin a injected into the posterior hy-
pothalamus decreases a-delta and c-fiber activation 
to dural electrical stimulation as well as responses 
to noxious  thermal stimulation of the skin of the 
face.68 

The Role of Melatonin

Melatonin is produced in the pineal gland and is 
synthesized from serotonin.69 information from the 
Scn controls the nightly production of melatonin 
in a highly regulated manner.69 in addition to its 
role in maintaining homeostasis of the sleep-wake 
cycle, melatonin is also involved in seasonal be-
havioral changes based on the light-dark cycle.70 
Melatonin increases the inhibitory action of gam-
ma-aminobutyric acid (GaBa).71 Therefore, a de-
crease in production of melatonin could potentially 
result in a lowered nociceptive activation threshold 
normally modulated by GaBa.72 cH patients have 
demonstrated a decrease in both peak and normal 
melatonin levels.73 During the cluster periods, the 
melatonin levels are even more significantly re-
duced.74 Thus, based on its chronobiologic nature, 
alterations of melatonin secretion in cH patients 
are suggestive of a putative relationship.75 Treat-
ment with melatonin in cH has been shown to re-
duce the frequency of attacks in episodic but not 
chronic cH patients.76,77 

Hypoxia has been demonstrated to reduce secre-
tion of melatonin in some individuals.78 Melatonin 
also acts as a potent antioxidant and free radical 
scavenger, suggestive of a potential protective role for 
melatonin in hypoxia if it is functioning normally.79 

CH and SRBDs

although cH is considered rare in comparison to 
migraine headache, it is a primary headache disor-
der with a prevalence of 53 cases per 100,000 peo-
ple per year.80 it affects men more than women at a 
rate of 2.5:1 to 7.1:1.80,81 The diagnostic criteria for 
cH include at least five “attacks of severe, strictly 
unilateral pain in orbital, supraorbital, or temporal 
regions or in any combination of these sites, lasting 
15 to 180 minutes and occurring from once every 
other day to eight times a day.”82 Parasympathetic 
hyperactivity can be manifested in ipsilateral tearing 
of the eye, conjunctival injection, and rhinitis.83 also, 
the ipsilateral side of the face may appear red and 
diaphoretic.83 Sympathetic hypoactivity is evidenced 
by the combination of ipsilateral ptosis and miosis 
during attacks.84 The combination of ptosis and 
miosis on one side is referred to as claude Bernard-
Horner syndrome.85 a sense of restlessness is also 
characteristic of cH and may aid in the diagnosis if 
other signs are absent.82 cH rarely presents in child-
hood or adolescence, but it tends to become more 
prevalent in the second decade and usually declines 
in the fifth decade.86 The pattern of the pain of cH 
will typically present at specific times of the day or 
during sleep.63

cH, migraine, and other headaches have been 
shown to be associated with arousal from and disrup-
tions of rEM sleep.9,87 in 1970, Dexter and Weitzman  
reported on the first polysomnographic study of 
chronic migraine and cH.88 Their findings indicated 
that cH attacks occurred during rEM sleep or within  
9 minutes of the end of the rEM period. This led to 
the view that cH was a rEM sleep-related disorder.89  
Bono et al demonstrated that sleep deprivation can 
curtail attacks in some cH patients.90 a similar out-
come was observed in patients who took rEM- 
delaying medications such as benzodiazepines.90

SrBDs are associated with recurrent nocturnal 
hypoxemia, hypercapnia, increased negative in-
trathoracic pressures, increased intracranial pres-
sures, and other physiologic changes, any of which 
could potentially act as a triggering mechanism for 
cH.91 Most patients with OSa remain undiagnosed, 
even when presenting symptoms and signs of  exces-
sive daytime sleepiness.18 it is suggested that OSa is 
due to anatomic airway narrow ing and alterations 
in upper airway neuromuscular tone during sleep.92  
cH has been reported to occur in 31% to 80% of 
cH patients.93,94 cH patients have an eight times 
higher risk of exhibiting OSa than the general popu-
lation.94 The risk increases when the body mass index 
(BMi) is greater than 25 kg/m2 at ages of 40 years or 
older.94 The Wisconsin Sleep cohort suggested the 
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prevalence of OSa to be 24% in 30- to 60-year-old 
cH patients,95 much lower than other reports.93,96 
also, with cH having a prevalence of approximately 
50 cases per 100,000 people per year80 and SrBDs 
occurring in approximately 20% to 25% of men,18 
it is quite apparent that not all people with a SrBD 
also have cH. 

Headaches due to a SrBD are sometimes defined 
as a disorder of homeostasis, primarily caused by 
hypoxia and hypercapnia.82 One suggested explana-
tion for this relationship is that intracranial  vasodil-
atation resulting from hypoxia and hypercapnia can  
produce a painful experience.97 in addition, hyper-
capnia can induce activation of nociceptive afferents 
in the dura via vasodilatation.98 During a cluster pe-
riod, attacks can be precipitated by consumption of 
alcohol and  other vasodilators such as histamine 
and nitroglycerine.99 a history of tobacco smok-
ing has been noted in up to 83% of male cH pa-
tients who average at least 20 cigarettes per day.100 
in 1984, Kudrow et al101 found that approximately 
60% of cH attacks came after hypoxic events, pri-
marily during rEM sleep. chervin et al93 found that 
80% of their cH study group had an apnea-hypoxia  
index of greater than 5. nobre et al29 found the in-
cidence of sleep apnea in cH patients to be 58.3% 
as compared to 14.3% in controls. cH and OSa are 
more common in men than in women.29 as males 
reach puberty, the increase in testosterone produc-
tion is thought to facilitate the collapsibility of the 
upper airway.26 in healthy young men, the transition 
from wakefulness to sleep produces a decrease in 
ventilation and an increase in UarS.102,103 

Meyer104 reported a direct relationship between 
cerebral blood flow (cBf) and end-tidal volume 
pressure of cO2. He suggested that hypoxia is a po-
tent cerebral vasodilator that increases cBf via a 
decrease in production of prostacycline (a prosta-
glandin eicosanoid that prevents clotting and induc-
es the dilation of blood vessels). This hypothesis was 
based on the observation that indomethacin will 
inhibit the vasoconstrictive effects of hyperoxia.104 
Potent vasodilators potentially influence changes 
in substances such as adenosine, a sleep-promoting 
agent.104 Meyer also observed that in non-hyperven-
tilation induced hypercapnia, cBf increased.104 He 
reported that, as sleep initiates, there appears to be 
a progressive decrease in cBf. also, with the onset 
of rEM sleep, a marked increase in cBf is noted, 
particularly in the parieto-occipital regions of the 
cerebral cortex. 

Sleep apneic patients demonstrate a more signifi-
cant reduction in cBf during sleep than do their non-
apneic  counterparts, potentially leading to hypoxia 
of neural structures.104 cBf has been demonstrated 

to increase during migraine and cH attacks.104 May 
et al demonstrated an increase in blood flow in the 
area of the hypothalamus on the side ipsilateral to the 
head pain.10,105 This same area of the hypothalamus, 
known as the anteroventral hypothalamic grey mat-
ter, also contains neurons of the Scn.106 The Scn is  
known to be important in circadian rhythmicity.107,108 
This observation suggests that the Scn may be the 
site where cH is initiated.109 Kudrow110 suggested 
that the carotid body may play a significant role in 
the pathophysiology of cH. Their hypothesis views 
the cH attack period resulting from a dysfunctional  
hypothalamus, thereby creating a deregulation of 
vasomotor centers. They proposed that during the 
cluster period, chemoreceptive activity in the carotid 
body is blunted by inhibition of sympathetic vaso-
motor tone and by parasympathetic activation.

Conclusions

When only the anatomic and physiologic similari-
ties of cH and SrBDs are considered, it would be 
tempting to suggest that they exist as a single disor-
der. While it is plausible that a SrBD will act as a 
trigger for cH attacks in cluster periods, not all cH 
patients exhibit a SrBD. if all cH attacks could be 
prevented with successful treatment of the comorbid 
SrBD, a stronger case could be made for a common 
etiology. in summary, when a cH patient is en-
countered in clinical practice, suspicion of a SrBD 
should lead the clinician to investigate further. With 
a good understanding of the commonalities of these 
disorders, the clinician’s ability to care for these suf-
fering individuals will only be enhanced.
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