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Aim: To test whether orofacial mechanical and thermal hypersensitivities occur in 
rats during orthodontic tooth movement (OTM). Methods: Sprague-Dawley rats 
(140 to 160 g) were divided into an experimental (E) group (n =7), with an active 
orthodontic spring placed in the right side of their mouth, and a sham (S) group 
(n = 7), with an inactive orthodontic spring. Mechanical sensitivity was tested 
preoperatively (1 day before attaching the orthodontic spring) and postoperatively 
(1 hour, 3 hours, 6 hours, days 1 to 7, day 14, day 21, and day 28 after orthodontic 
spring attachment) on the cheek, upper lip, and maxillary incisor labial gingiva 
bilaterally by recording the threshold for a head withdrawal response evoked 
by von Frey filaments. Thermal sensitivity was also tested preoperatively and 
postoperatively on the cheek bilaterally by applying a noxious thermal stimulus 
and measuring head withdrawal response duration, response score, and response 
percentile rate. Statistical analyses involved a mixed-model repeated-measures 
analysis of variance (MMRM ANOVA). Results: The mechanical and thermal 
sensitivities at all bilateral sites were significantly increased (P < .01) in the  
E group in the early postoperative period (1 to 5 days), with peaks reached on day 
1, and then returned to and remained at preoperative levels until postoperative 
day 28. However, there was no significant change from the preoperative levels 
in mechanical and thermal sensitivities for the S group for all the tested sites. 
Conclusion: This rat OTM-induced pain model correlates with the time course of 
OTM-induced pain in humans and suggests that OTM-induced mechanical and 
thermal hypersensitivities may be useful measures of OTM-induced pain. J Oral 
Facial Pain Headache 2015;29:60–69. doi: 10.11607/ofph.1336

Key words:  behavioral changes, malocclusion, orofacial, orthodontic appliances, 
sensitization

Orthodontic treatment is a common clinical procedure, and most 
orthodontic patients experience pain that has been suggest-
ed to affect treatment outcomes and compliance.1–8 A majority 

of the patients undergoing orthodontic treatment first experience pain 
approximately 4 hours after orthodontic appliance placement, and pain 
reaches its peak levels at 24 hours, usually lasts for 2 to 3 days, and then 
gradually dissipates completely by 5 to 6 days.9–17 An immediate and 
delayed painful response after orthodontic force application has also 
been reported in the initial few days of OTM.12,18,19 The immediate pain 
has been attributed to compression of the periodontal ligament (PDL) 
and the resulting input from activated nociceptors, and the delayed pain 
to a hyperalgesic state. However, the etiology and pathophysiology of 
OTM-induced pain are still largely unknown, and no animal model has 
been developed to simulate clinical OTM-induced pain in humans.

A number of animal models have been developed to study various 
types of pain-related behaviors and mechanisms.20–23 In the orofacial 
region, the infraorbital nerve ligation model24,25 and the inferior alveo-
lar nerve injury model26–28 have been particularly used (for review, see 
Dubner et al29 and Iwata et al30). Other behavioral models have been 
developed to study temporomandibular joint (TMJ), masticatory muscle, 
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and pulp pain mechanisms by characterizing the noci-
ceptive behavioral responses induced by the injection 
of algesic chemicals into these tissues or by using 
other approaches to disrupt these tissues31–50 (for re-
view, see Khan and Hargreaves51 and Sessle52). 

The majority of behavioral studies using orofa-
cial pain models in animals have typically assessed 
pain behavior in terms of evoked withdrawal respons-
es and hypersensitivity. These include behavioral 
hyperalgesia and allodynia.24,25,30,53 Quantification of 
behavioral responses to cutaneous hyperalgesia in 
the orofacial region in animals has relied upon me-
chanical testing24,25,54–56 and thermal testing proce-
dures.57–60 Since there is a need for animal models 
of clinical OTM-induced pain in humans, and since 
OTM induces sensorimotor cortical neuroplasticity 
that conceivably could be a result of OTM-induced 
pain,61 the aim of this study was to test whether oro-
facial mechanical and thermal hypersensitivities oc-
cur in rats during OTM. Some findings of this study 
have been published briefly in an abstract.62

Materials and Methods

Animal Preparation
Experiments were performed on 14 young adult 
male Sprague-Dawley rats (140 to 160 g) that were 
6 weeks old and housed in cages (27 cm × 45 cm 
× 20 cm) in a temperature- (21°C ± 1°C) and hu-
midity- (50% ± 5%) controlled environment under a 
12-hour light/dark cycle (lights on at 07:00 am) and 
that received water and a mashed diet (Rodent diet 
#2018M, Harlan Teklad) ad libitum. The rats were ac-
climatized to the environment for 1 week before the 
initiation of the study. All experimental procedures 
were approved by the University of Toronto Animal 
Care Committee, in accordance with the Canadian 
Council on Animal Care Guidelines and the reg-
ulations of the Ontario Animals for Research Act 
(RSO 1990), and the guidelines of the International 
Association for the Study of Pain. All experimental 
procedures were carried out by one investigator (to 
ensure consistency in the experimental procedures), 
who was blinded to the animal groups; the data anal-
yses were performed by another experimenter who 
was also blinded to the animal groups.

Study Groups and Orthodontic Springs
The rats were separated into two groups, an ex-
perimental (E) group (n = 7) that received a nickel- 
titanium (Ni-Ti) closed-coil orthodontic spring (coil di-
ameter 0.22 mm, eyelet diameter 0.56 mm, force on 
activation 10 cN, GAC) activated to induce OTM, and 
a sham (S) group (n = 7) that received the orthodontic 
spring but in an inactive state. The orthodontic springs 

were attached between the maxillary right molars and 
both the maxillary incisors under general anesthesia 
(inhalation isoflurane 5% induction, 2%~2.5% main-
tenance). The extension of the facemask that was 
used for general anesthesia was limited to the snout 
of the rat and permitted free access to the oral cavity 
to place the orthodontic spring.

Stimulation Procedures and Behavioral 
Recordings
Rats were placed in a cylindrical restrainer (10 cm  
diameter, 20 cm length) with an open posterior end 
and a small opening in the anterior end through which 
the rats could place their snouts. This restrainer per-
mitted the investigator access to the face of the rat, 
but covered the eyes so that the rat could not visualize 
the approach of the investigator to perform mechan-
ical and thermal stimulation. Further, the restrainer 
was large enough to allow the rat to rotate to the pos-
terior end to escape the stimulus. Multiple grooves 
cut into the side of the restrainer posterior to the ini-
tial 1 cm from the anterior end permitted the investi-
gator to visualize the rat after the stimulus induced a 
withdrawal response of the head into the restrainer. 
Before the stimulation session, rats were adapted to 
the restrainer for 15 minutes daily, and then the series 
of mechanical and thermal stimulations were initiated. 
Stimulations were applied perpendicular to the sagit-
tal plane of the head when the rat was neither moving 
nor freezing. A stimulus was applied only when the 
rat resumed this position and at least 30 seconds 
after the preceding stimulation. Three consecutive 
days before the placement of the orthodontic spring, 
the rats were habituated to the restrainer. One day 
prior to the placement of the orthodontic spring, the 
preoperative values for the mechanical and thermal 
tests were obtained. Rats were then tested for me-
chanical and thermal sensitivities at 3 hours, 6 hours, 
days 1 to 7, 14, 21, and 28 after the placement of the 
orthodontic spring. Testing was conducted at times 
between 0700 and 1500 hours of the day. Rats were 
tested in the test room with a constant background 
noise (50 dB) that was used to decrease any interfer-
ence of sudden auditory stimulation.

For mechanical stimulation, von Frey filaments 
(Pressure Aesthesiometer, Stoelting Co) of varying 
diameters were used; the force required to bend 
each filament was 1 g, 1.4 g, 2 g, 4 g, 6 g, 8 g, 10 g, 
or 16 g, in an ascending series. During one session, 
the complete series of von Frey hair intensities was 
presented in an ascending series until a response 
was obtained. Each testing site was stimulated with 
each filament five consecutive times in an ascending 
order starting with 1 g. When three out of five stim-
ulations for a filament resulted in a head withdrawal 
response (see below), the force level of that filament 
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was considered the threshold mechanical response 
level. Once the threshold response was obtained, 
the threshold value was confirmed by dropping down 
to one size smaller in the series of von Frey filament 
stimulation intensities and observing if the withdrawal 
response could no longer be evoked by that stimulus 
intensity.20,24,25,63,64 The sites were tested in a random 
order with at least 1 minute time lag between the dif-
ferent test sites. Further, a time lag of 30 seconds 
was maintained between each filament contact at 
each testing site. Mechanical stimuli were applied to 
the cheek, upper lip, and maxillary incisor labial gin-
giva. Radiographic images and anatomical landmarks 
of the head of the rat were used to select the stimu-
lation sites. The site of the cheek was the midpoint 
vertically between the second and the third row of 
whiskers and horizontally the most posterior extent of 
the vibrissal pad where it meets the furry skin of the 
cheek. This point was midway on the cheek between 
the maxillary incisor and the maxillary molar teeth, 
and although being on the hairy vibrissal pad, was 
covered with only a small amount of hair and thereby 
provided an unobstructed area for mechanical test-
ing. Secondly, the anterior opening of the restrainer 
permitted this area of the rat’s face to be easily ac-
cessible for testing. For the upper lip, the testing was 
done at a spot midway along the length and the width 
of the upper lip. In testing for the maxillary incisor la-
bial gingiva, caution was taken to prevent making any 
contact with the upper lip. These various areas were 
stimulated on both sides of the face, ie, ipsilateral and 
contralateral to the side where the orthodontic spring 
was attached.

For thermal testing, a beam of noxious radiant 
heat was aimed at the cheek. The stimulation was 
limited to the ipslilateral and the contralateral cheek 
site only, and the site was similar to the one used for 
mechanical testing on the cheek. The light source 
was made from the lamp housing of a fiber optic mi-
croscope illuminator (Lype Laser). The radiant heat 
stimulus was a focused beam of light from a modified 
microscope illuminator, the aperture of which was 
10 cm from the stimulation site. Thermal testing was 
done at a strength of 22 A and duration of 200 ms to 
generate a noxious radiant heat.65 Guideline marks on 
the laboratory table helped maintain a constant dis-
tance between the skin and the heat source. Head 
withdrawal latency along with the response duration 
was measured by using a stopwatch to give the to-
tal response duration (TRD). It was determined five 
times on each side of the face with 2-minute intervals 
between each stimulus; any response that occurred 
in at least three out of five thermal stimuli was consid-
ered a positive response. Since the values for head 
withdrawal latency and response duration could not 
be separated because the response was very rapid, 

the TRD value was measured and used in the anal-
ysis. A thermal stimulation cutoff of 6 seconds was 
used to prevent tissue damage.

Behavioral Scoring
For mechanical testing, the behavioral response 
threshold was noted for each of the testing sites 
when there was a head withdrawal response, ie, the 
rat pulled its head briskly backward when the stimu-
lus was applied.25,64 Further, to compare if the change 
in mechanical response threshold affected one of 
the tested sites more than the other in the E group, 
the change in postoperative response threshold from 
the preoperative response threshold was compared 
amongst the different tested sites on analogous days. 
For thermal testing, in addition to measuring the TRD 
(see above), each response was scored57–59,66,67 by 
grading the response from 0 to 3 (0 = no response, 
1 = slight twitch [approximately 0.5 seconds], 2 = 
distinct movement away from the stimulus/brief 
stroke of the face by the rat’s paw [range of 0.7 to  
1.2 seconds], 3 = very strong movement/turn 
around). Also, the frequency of a positive response 
during the thermal testing procedure was calculated 
as the response percentile rate.

Statistical Analyses
Statistical differences between groups at different 
time points were determined by using multivariate 
(mixed-model repeated-measures [MMRM] analysis 
of variance [ANOVA]) analyses, followed by post-hoc 
Sidak-adjusted pairwise comparisons as appropriate. 
A probability level of P < .05 was considered statisti-
cally significant. Data were analyzed by a statistician 
using the SAS statistical software program (version 
9.3). All values are expressed as mean ± SEM.

Results

The condition of the rats was monitored daily during 
the experiment and no abnormal behavior or ortho-
dontic spring-related complications were appar-
ent. Before the orthodontic spring was placed, the  
E- and S-group animals had a similar daily gain in 
body weight. However, after the placement of the or-
thodontic spring, the E group had a small but signif-
icant loss of weight for day 1 as compared to the S 
group (P < .001), but thereafter gained weight again 
at a similar rate to that of the S group. Significant 
changes in mechanical and thermal sensitivities fol-
lowing OTM were documented during the testing 
period, which extended from 1 day before (preopera-
tive) and 28 days after (postoperative) the placement 
of the orthodontic spring on the maxillary molars and 
the maxillary incisors.
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Response Threshold Related to Mechanical 
Stimulation
In the S group, the postoperative response threshold at 
any of the tested sites (cheek, upper lip, and maxillary 
incisor gingiva) did not differ significantly from the pre-
operative response threshold value at that same site  
(P > .05). However, MMRM ANOVA revealed sig-
nificant differences in treatment (P = .036). In the  
E group, a significant difference was revealed in time 
(P < .0001) and also in treatment × time interaction 
effects (P < .0001). There was no significant differ-
ence between the mean values of the ipsilateral and 
the contralateral sides of the tested sites (P = .69), 
indicating that the contralateral response threshold 
decrease reached statistical significance at the same 
time as the ipsilateral side (at postoperative day 1 for 
all sites, except at 6 h for the maxillary incisor gingi-
val site). The significant change was reflected in a de-
crease in response threshold that reached its peak on 
postoperative day 1, but none of the significant chang-
es in response thresholds to mechanical stimulation 
of the orofacial areas lasted longer than postoperative 
day 4 (Fig 1).

At the cheek site, post-hoc analysis revealed a 
significant decrease in the response thresholds in 
the E group on each of the postoperative days 1 to 
4 compared to the preoperative value (P < .0001) 
and compared to analogous days in the S group  
(P < .0001) (Fig 1a). A significant decrease in post-
operative response threshold was also observed at 
the upper lip site in the E group on each of the post-
operative days 1 to 4 compared to the preoperative 
value (P < .0001) and compared to analogous days in 
the S group (P < .01) (Fig 1b). At the maxillary incisor 
gingival site, a significant decrease in the response 
thresholds in the E group was revealed at 6 hours 
and each of the postoperative days 1 to 4 compared 
to the preoperative value (P < .0001) and compared 
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Figs 1a to 1c    Response threshold evoked by bilateral me-
chanical stimulation at the cheek, upper lip, and maxillary incisor 
gingival sites. (a) At the cheek site, post-hoc analysis revealed a 
significant decrease in the response thresholds in the E group on 
each of the postoperative days 1 to 4 compared to the preoper-
ative value (P < .0001) and compared to analogous days in the  
S group (*P < .0001). (b) A similar trend of decrease in postoper-
ative response threshold was observed at the upper lip site in the 
E group on each of the postoperative days 1 to 4 compared to the 
preoperative value (P < .0001) and compared to analogous days 
in the S group (#P < .01). (c) At the maxillary incisor gingival site, 
a significant decrease in the response thresholds in the E group 
was revealed on 6 hours and each of the days 1 to 4 compared to 
the preoperative value (P < .0001), and compared to the analo-
gous time period in the S group (̂ P < .01).
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to the analogous time period in the S group (P < .01) 
(Fig 1c). The postoperative response threshold at 
each of these sites returned to the preoperative levels 
by day 5, and thereafter remained at those levels until 
day 28. Amongst the three tested sites, the lowest 
response thresholds were detected at the maxillary 
incisor gingival site (Fig 1). Further comparison of the 
early postoperative decrease in mechanical response 
threshold to the preoperative value between the three 
sites for the E group on the analogous days revealed 
that there was no significant difference in the level of 
decrease in response thresholds compared to their 
preoperative value at all the sites.

Responses Related to Thermal Stimulation
The responses evoked by noxious thermal stimulation 
applied bilaterally to the cheek site were measured in 
terms of three parameters described below. In the S 
group, the postoperative value at the tested site did 
not differ significantly from the preoperative test value 
for that site, but multivariate analysis revealed signifi-
cant differences in treatment (P < .05). In the E group, 
a significant difference was also revealed in time  
(P < .0001), and also in treatment × time interaction 
effects (P < .0001). There was no significant differ-
ence in any of the measured thermal response param-
eters between the sides of the tested sites (P > .05), 
indicating that the contralateral thermal response val-
ues reached statistical significance around the same 
time as those for the ipsilateral side (at day 1), but none 
of the significant changes to thermal stimulation of 
the cheek site lasted longer than postoperative day 5  
(Fig 2).

Post-hoc analysis revealed a significant increase 
in TRD for each side in the E group on each of the 
postoperative days 1 to 5 compared to the preoper-
ative value (P < .0001) and compared to that for the 
analogous days in the S group (P < .0001) (Fig 2a).  
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Figs 2a to 2c    Responses evoked by noxious thermal stimula-
tion on the cheek site tested, as reflected by the total response 
duration (TRD), response score, and response percentile rate.  
(a) There was a significant increase in the TRD in the E group on 
each of the postoperative days 1 to 5 compared to the preoper-
ative value (P < .0001) and compared to the analogous days in 
the S group (*P < .0001). (b) There was a significant increase in 
the response score in the E group on each of the postoperative 
days 1 to 5 compared to the preoperative value (P < .0001) and 
compared to the analogous days in the S group (#P < .0001).  
(c) There was a significant increase in the response percentile 
rate in the E group on each of the postoperative days 1 to 5 com-
pared to the preoperative value (P < .0001) and compared to the 
analogous days in the S group (̂ P < .001).
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Further, a significant increase for each side in the re-
sponse score (0 to 3) in the E group on each of the 
postoperative days 1 to 5 compared to the preoper-
ative value (P < .0001) and compared to that for the 
analogous days in the S group (P < .0001) was re-
vealed (Fig 2b). Also, a significant increase occurred 
for each side in the response percentile rate in the  
E group on each of the postoperative days 1 to 5 
compared to the preoperative value (P < .0001) and 
compared to that for the analogous days in the S 
group (P < .001) (Fig 2c).

Discussion

This is the first study to document that orofacial me-
chanical and thermal sensitivities change in a rat 
OTM-induced pain model. The mechanical hyper-
sensitivities reflected a decrease in the mechanical 
response thresholds, and the thermal hypersensitiv-
ities consisted of an increase in the response dura-
tion, response score, and response percentile rate. 
The mechanical and thermal sensitivities at all sites 
tested were significantly increased in the E group in 
the early postoperative period and then returned to 
preoperative levels around postoperative days 4 to 6; 
they were maintained at this level for the rest of the 
28-day testing period. However, there was no signif-
icant change in mechanical and thermal sensitivities 
for the S group from the preoperative control level for 
all the tested sites for the entire testing period.

Both mechanical and thermal hypersensitivities 
occurred in contralateral as well as ipsilateral test-
ed sites, although the active orthodontic spring was 
attached on the right side intraorally. This finding is 
in line with reports of both contralateral and ipsilat-
eral orofacial hypersensitivities in acute and chronic 
orofacial pain models24,25,30,35,37,49,50,52 that are sug-
gestive of neuroplastic changes reflecting central 
sensitization in trigeminal brainstem subnucleus cau-
dalis,26,28,68–70 and likewise with contralateral as well 
as ipsilateral hyperalgesia in pain models involving 
spinal nerve injury.71–73 The finding is also consistent 
with the projection of some trigeminal primary affer-
ents to the contralateral subnucleus caudalis, and 
with projections from the subnucleus caudalis on one 
side to the contralateral brainstem.74–76 Furthermore, 
the orthodontic spring was attached to both the max-
illary incisors, and a transmedian pathway via the 
trigeminal ganglion may have contributed to the con-
tralateral hypersensitivities.77

Peripheral and Central Mechanisms of  
OTM Pain
The OTM-induced mechanical and thermal hyper-
sensitivities documented in the present study would 

have involved both peripheral and central neural 
mechanisms. OTM may result from an inflammatory  
process in the PDL78–80 and dental pulp81–84 due to 
compression of the PDL by the movement of the 
tooth.85 The hypersensitivities apparent in the early 
postoperative period in the present study are consis-
tent with a gradually developing hyperalgesic state 
attributed to injury-induced peripheral sensitization of 
nociceptive afferent endings in the PDL and associ-
ated structures.19,78,79

Furthermore, the peripheral sensitization of the 
nociceptive afferent endings can result in an aug-
mented afferent barrage conducted along the no-
ciceptive afferents into the central nervous system 
(CNS) and the production of trigeminal central sen-
sitization that can contribute to orofacial hyperalge-
sia.52,86,87 Thus, central sensitization could have been 
involved in the orofacial hypersensitivities in the early 
period of OTM. Since the present study demonstrat-
ed a return of the mechanical and thermal sensitivi-
ties to the preoperative control level by postoperative 
day 6 and this level was maintained for the rest of the 
28-day testing period, long-term central sensitization 
mechanisms were unlikely present beyond the early 
period of OTM. Peripheral and central mechanisms 
may also have contributed to shortening the duration 
of OTM-induced pain behavior, since peripheral re-
ceptor mechanisms exist (eg, opioid, GABA) that me-
diate analgesic effects that are prominent in painful 
orofacial inflammatory conditions.52,88–90 In addition, 
OTM-induced nociceptive afferent inputs have been 
suggested to activate the descending inhibitory sys-
tems in the periaqueductal grey and its projections to 
the trigeminal subnucleus caudalis at postoperative 
day 1 of OTM.91–94 Therefore, these antinociceptive 
mechanisms may have contributed to the dissipation 
of the OTM-induced orofacial hypersensitivities by 
postoperative day 6.

OTM is also associated with an impairment 
of chewing and biting ability, a decrease in biting 
force,95,96 a decrease in the frequency of tooth con-
tacts during the early stages of OTM, and a decrease 
in pressure pain threshold for the masseter and ante-
rior temporalis muscles.95,97–99 Thus, occlusal chang-
es during the early period of OTM may also have 
contributed through intraoral and muscle hyperalge-
sia to the short-term hypersensitivities documented 
in the present study.

Mechanical and Thermal Hypersensitivities of 
the Orofacial Region as an Index of  
OTM-Induced Pain
The time-dependent hypersensitivity changes in the 
present study correlated well with the early period 
of OTM-induced pain reported in human and rodent 
studies.9–11,13–17,100 Furthermore, the mechanical and 
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thermal sensitivities for the S group were maintained 
at the preoperative control level for all the tested sites 
for the entire testing period. This finding addresses 
the concern that response parameters to repeated 
application of the same series of mechanical and 
thermal stimuli might be influenced by factors such 
as tissue damage, learning effect, animal fatigue, and 
increased animal irritability introduced by the testing 
procedures.53 Hence, these observations in this rat 
OTM-induced pain model provide strong evidence 
for the validity of using mechanical and thermal  
hypersensitivities as a measure of OTM-induced 
pain.

Another model of OTM-induced pain that mon-
itors facial expression suggests a threshold force 
magnitude between 20 and 40 cN may be needed 
to evoke orthodontic pain.100 The difference in force 
magnitude used in that study and the present study 
to induce OTM-pain may be due to different sensitiv-
ities of the methods employed to assess pain. Also, 
studies in rats indicate that forces of less than 10 cN 
may be the ideal force magnitude for inducing an op-
timal rate of OTM,101–103 and this was the force used 
in the present study that could induce mechanical 
and thermal hypersensitivities. 

Strengths, Limitations, and Future Directions
Most OTM pain studies in humans and animals have 
used the Waldo’s method104 (1954), which consists of 
placing an intermaxillary elastic between the molars 
to induce OTM-associated pain. However, unlike the 
present study, these studies have not tested whether 
orofacial pain behavior occurs in these models. The 
use of Waldo’s method has orthodontically related 
disadvantages in that the intensity of the initial force 
generated by the elastic has been calculated to be 
approximately 80 to 200 g.102,105 This value is equiv-
alent to 1.6 to 4 kg for humans because the roots of 
the human first molar have a surface area of about 20 
to 50 times larger than that of the rat molar.102,106 This 
heavy force applied to rat molars may not simulate the 
clinical condition of OTM in humans, and when this 
heavy a force is applied to molars in a rat, it may lead to 
an immediate forced eruption of the tooth and there-
by cause hyperocclusion. Studies of occlusal trauma 
have documented hyperocclusion-based hypersen-
sitivity.107 Also, the elastic used in Waldo’s method 
suffers from a rapid dissipation of force.102 Therefore, 
the use of an orthodontic appliance that generates a 
mild constant force that better simulates clinical con-
ditions, like the Ni-Ti orthodontic spring used in the 
present study, is a more appropriate means of induc-
ing OTM for experimental pain studies.

In the present study, a stopwatch was used to 
record the TRD for thermal testing. Although one 
experimenter performed these experiments and had 

extensive training in operating the stopwatch, there 
would have been a latency for eye and button-press 
responses that might have affected actual TRD 
values; however, this would not have undermined 
the study conclusions about differences between 
groups, since the same method was used for all an-
imals.108 Also, the present study design was limited 
in its aim to study OTM-induced nociception that 
was related to the changes in evoked behaviors, 
and future studies to document spontaneous behav-
ioral changes related to pain are indicated to clarify 
mechanisms relevant to spontaneous OTM-induced 
pain. Furthermore, future studies are warranted to 
test for the presence of any secondary allodynia and 
hyperalgesia beyond the trigeminal innervation do-
main,52,53,59,87 and to delineate the impact of OTM on 
different neural structures of the PDL and their influ-
ence on mechanical and thermal sensitivities.

Conclusions

This project has introduced an OTM rat model that 
uses orthodontic force parameters that are well de-
fined and within the physiologic limits when applied 
to the teeth of rats and that correlate well with the 
orthodontic forces applied clinically in humans. The 
present study has also characterized the orofacial 
mechanical and thermal hypersensitivities that oc-
cur in this OTM model. The mechanical and thermal 
hypersensitivities were apparent bilaterally and were 
significantly increased in the early postoperative pe-
riod (days 1 to 5), with peaks reached on postoper-
ative day 1, and then returned to preoperative levels. 
The hypersensitivities correlate well with the time- 
dependent pain reported in clinical OTM pain stud-
ies in humans. This behavioral model of allodynia/ 
hyperalgesia related to OTM can serve as an import-
ant experimental approach to assess OTM-induced 
nocifensive behaviors and to study the mechanisms 
underlying OTM-induced pain.
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